首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Our research group of the Children's Hospital of the University of Rostock (Rostock group) has long-time experience in (15)N-labelling and in using yeast protein and its hydrolysates for tracer kinetic studies to evaluate parameters of the whole-body protein metabolism in premature infants. The particular advantage of applying an economically convenient, highly (15)N-enriched, and completely labelled yeast protein for evaluating protein turnover rates is the fact that the (15)N dose is spread among all proteinogenic amino acids. The absorption has been improved by hydrolysing [(15)N]yeast protein with thermitase into a mixture of amino acids, dipeptides and tripeptides so that faecal analysis becomes unnecessary when determining turnover rates. The review shows that, in contrast to the application of single (15)N-labelled amino acids with resulting overestimation of protein turnover rates, the (15)N-labelled yeast protein thermitase hydrolysate represents the amino acid metabolism more closely without causing amino acid imbalances. The (15)N-labelled yeast protein thermitase hydrolysate leads to the estimation of reliable protein turnover rates, particularly in premature infants.  相似文献   

2.
The aim of the study was to investigate the whole-body protein turnover, either before or after continuous, moderate ethanol-induced oxidative stress by red wine consumption over a relatively short period in healthy volunteers. Ten healthy adults received an individual regular diet over 20 days. After 10 days, the subjects consumed 0.4 ml ethanol kg?1 day?1 as red wine together with dinner over a 10-day period. After 8 and 18 days, respectively, a 15N-labelled yeast protein was administered in a dosage of 4.2 mg kg?1 body weight. Urine and faeces were collected over 48 h, respectively. The 15N-enrichment was measured by isotope ratio mass spectrometry, whereas the protein flux rates were calculated by a three-compartment model. The whole-body protein turnover without/with red wine consumption amounted to 3.73±0.6 and 3.49±0.6 g kg?1 day?1 (not significant), respectively. Moderate alcohol consumption does not induce significant short-term changes in the whole-body protein turnover of healthy adults.  相似文献   

3.
The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem. 2009;41:785–795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with 15N ammonium, 15N nitrate, and 15N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the 15N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50 % of the total soil N2O release. Under anoxic conditions, denitrification was the dominant process for soil N2O release. The relative contribution of Norg to the total soil NO release was small. Ammonia oxidation served as the major pathway of soil NO release under oxic and hypoxic conditions, while denitrification was dominant under anoxic conditions. The model parameters for soil with moderate soil organic matter (SOM) content were not scalable to an additional data set for soil with higher SOM content, indicating a strong influence of SOM content on microbial N turnover. Thus, parameter estimation had to be re-calculated for these conditions, highlighting the necessity of individual soil-dependent parameter estimations.  相似文献   

4.
During the 29th Soviet Antarctic Expedition in Novolazarevskaya from March 1984 to March 1985, the protein and energy metabolisms were studied in six expeditioners from the German Democratic Republic. The investigations were carried out at the beginning of the expedition (May), during the polar night (July) and during the polar day (December). The effect of a special stress situation (sledge trek in April 1984) was investigated in one subject. The stable nitrogen isotope 15N was used to study the protein metabolism. The assessment of the energy metabolism was based on the oxygen consumption, which was determined by means of a spirograph. In addition, the vital capacity, the breath minute volume, the blood pressure, etc. were measured. The following results were obtained: During the polar night, the utilisation of the dietary proteins and the whole body protein synthesis calculated by means of the 15N excretion of the total nitrogen in urine were greater (73.6±0.9 % and 3.48±0.17 g protein d?1 kg?1, n=3) than the respective values during the polar day (69.7±1.2, p<0.05, n=3 and 3.05±0.07, p<0.05, n=3) and at the beginning of the expedition (69.6±1.4, p<0.02, n=5 and 2.81±0.09, p<0.01, n=5). The lowest values (58.0 % and 2.43 g protein d?1 kg?1) were obtained in the subject after the trek. The resting metabolic rate (in kJ d?1 m?2) was decreased during the polar night (45.6±5.0, n=4) in comparison with the polar day (61.5±11.3, n=3) and the beginning of the expedition (52.3±9.6, n=4) with p<0.01 in both cases.  相似文献   

5.
Three resistant starches (RSs), namely fibre of potatoes (FP), wrinkle pea starch (WPS), and high amylose maize starch (HAMS) with different dietary fibre contents, were supplemented in adults to evaluate their effects on urinary nitrogen and ammonia excretion as well as on faecal nitrogen excretion by means of lactose-[15N2]ureide (15N-LU) degradation. Twenty subjects received a regular diet either without or with the supplementation of FP, WPS, and HAMS in a randomized order. After administration of 15N-LU, urine and faeces were collected over 48 and 72 h, respectively, whereas blood was collected after 6 h. The 15N-abundances were measured by isotope ratio mass spectrometry. In comparison to the dry run, supplementation with RS significantly lowered renal 15N-excretion (dry run: 43.2?%, FP: 34.6?%, WPS: 37.9?%, HAMS: 36.4?%) as well as the corresponding 15NH3-excretion (dry run: 0.08?%, FP: 0.06?%, HAMS: 0.05?%), clearly indicating a reduced colonic nitrogen generation at high dietary fibre intake.  相似文献   

6.
Resistant starch (RS) and Lactobacillus acidophilus yoghurt (LC1) were supplemented simultaneously in healthy adults to evaluate the effect on the urinary and faecal nitrogen and ammonia excretion by means of lactose-[15N2]ureide (15N-LU) degradation. Nineteen subjects received a regular daily diet either without or with supplementation of an RS-LC1-mixture composed of fibre of potatoes (RS type 1), wrinkle pea starch (RS type 2), and LC1 over a 20-day period in randomised order. Thereafter, 15N-LU was administered together with breakfast. Urine and faeces were collected over a period of 48 and 72 h, respectively. The 15N abundances were measured by isotope ratio mass spectrometry. The intake of the pre- and probiotic mixture composed of RS of type 1, type 2 and of LC1 significantly lowered the colonic generation and the renal excretion of toxic 15NH3 and functioned as an ammonia shift from urinary to faecal 15N excretion when using 15N-LU as a xenobiotic marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号