首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A combined system consisting of a TOC analyser connected to a quadrupole MS was recently described as a way of measuring the N content and the 15N abundance of total dissolved nitrogen in aqueous samples. This work examines whether this combination of instruments can also be used for the 13C determination of the total dissolved carbon in aqueous samples. A level of precision good for 13C-enriched samples was achieved with a relative standard deviation of <3%. By using an isotope ratio MS instead of the quadrupole MS employed here, TOC-MS coupling also ought to be suitable for determining natural 13C abundances.  相似文献   

2.
Abstract

The standard method for determining the 15N abundance of total dissolved nitrogen (TDN) in aqueous samples (e.g., soil leachate, sewage, urine) is currently Kjeldahl digestion followed by steam distillation or diffusion to isolate the ammonium, and then 15N measurement using IRMS. However, this technique is both time-consuming and laborious. One way of overcoming these disadvantages could be to couple a TOC analyser to determine the TDN with a sufficient quadrupole MS to determine the 15N abundance. The highTOC analyser (Elementar Analysensysteme Hanau, Germany), which catalytically oxidises the sample's total nitrogen with a high, constant yield to nitrogen monoxide (NO), appeared particularly suitable. The quadrupole-MS ESD 100 (InProcess Instruments Bremen, Germany) proved to be a suitable mass spectrometer for the 15N determination of NO. This combination of instruments was found to provide a workable method in numerous measurements of standard and actual samples. The detection limit concerning the N amount required per analysis is 2 μg, corresponding to an N concentration of 0.7mg/l in a maximum sample volume of 3ml. Depending on the N concentration, 15N abundances starting from 0.5 at.% can be measured with the required precision of better than 3% (simple standard deviation). For example, measuring the abundance of 0.5 at.% requires about 50 μg N, whereas for 1 at.% or more only about 5 μg N is needed per analysis.  相似文献   

3.
Tracers can be used to monitor emissions of leachate from landfills in order to detect hydrological pathways and to evaluate environmental pollution. We investigated the stable carbon isotope ratio (δ13C–Σ CO 2) in dissolved inorganic carbon and tritium (3H) in water, in addition to the tracers of pollution commonly found in relatively high concentrations in leachate, such as chloride (Cl), organic matter (COD), nitrogen (total and NH4–N), iron (Fe), electrical conductivity (EC) and pH. The sampling was performed at seven landfills in the south-eastern part of Norway during a period of 5 years. The objective was to evaluate the potential for tracing leachate in the environment with emphasis on groundwater pollution. By measuring the δ13C–Σ CO 2 in leachates, groundwaters and surface waters, the influence of leachate can be identified. The value of δ13C–Σ CO 2 varied from?5.5 to 25.9 ‰ in leachate, from?25.4 to 14.7 ‰ in groundwater and from?19.7 to?13.1 ‰ in creeks. A comparison of the carbon isotope ratio with COD, EC and the concentrations of total and NH 4–N, Cl and Fe showed that δ13C–Σ CO 2 is a good tracer for leachate due to higher sensitivity compared to other parameters. The mean concentrations of all the studied parameters were higher in the leachate samples; however, only the carbon isotope ratio showed significant differences between all the groups with strong and middle pollution and samples with low pollution, showing that it can be used as a convenient tracer for leachate in groundwater and surface water. The carbon isotope ratio showed strong correlation between nitrogen, EC and bicarbonate, but not with pH. Tritium was only sporadically found in measureable concentrations and is not considered as a suitable tracer at the sampled locations.  相似文献   

4.
Abstract

An on-line method for the determination of 15N and 13C with a gas isotope mass spectrometer (Finnigan, MAT 251) was developed to improve the sensitivity and to reduce measurements time and the cost of the sample analysis. For this purpose an elemental analyser (Carlo Erba, NA 1500) was coupled to the mass spectrometer using parts of the capillary system of a trapping box (Finnigan, type CN). For the determination of samples with natural concentrations of 15N and 13C the uncertainty of the delta value is less than 0.2 δ‰. The detection limit is in the order of 10 μg (total N or total C) and 7 samples can be analysed per hour.  相似文献   

5.
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.  相似文献   

6.
1H- {13C} and 1H- {15N} heteronuclear double resonance experiments are used to determine the transition frequencies in the 13C and 15N N.M.R. spectra of isotopically entriched samples of methyl cyanide dissolved in the nematic mesophase of p-ethoxybenzylidene-p-butyl aniline. It is found that σ - σ in the -C ≡ N group has values of 307 and 452 p.p.m. for 13C and 15N respectively, and these are rationalized in terms of Pople's LCAO theory of nuclear shielding.  相似文献   

7.
High-resolution solid-state 13C NMR spectra of histidine powder samples prepared from solutions at several pH values near the pKa of the imidazole group are presented. These spectra demonstrate several effects due to the titration of the imidazole group. The chemical shifts for all of the carbon sites change upon titration. They are in “slow exchange” in the solid state in contrast to the “fast exchange” behavior seen in solution. Changes in the quadrupole interactions in the 14N sites occur upon titration and are observed by their effects on the resonance lineshapes of the 13C sites to which they are bonded.  相似文献   

8.
A combination of C/N ratios, δ13C and δ15N values in suspended matter was used to examine the seasonal (late summer 2004 and spring 2005) relationship with hydrological characteristics of the River Sava watershed in Slovenia. The values of C/N ratios range from 1.2 to 19.1, δ13C values range from?29.2 to?23.0 ‰ and δ15N values from 0.5 to 16.7 ‰ and indicate that the samples are a mixture of two end members: modern soils and plant litter. A simple mixing model was used to indicate that soil organic carbon prevails over plant litter and contributes more than 50% of suspended material. The calculated annual particulate organic carbon flux is estimated as 5.2×1010 g C/year, the annual particulate nitrogen flux 8.5×109 g N/year and the total suspended solid flux is estimated to be 1.3×1012 g/year. Anthropogenic impact was detected only in a tributary stream of the River Sava, which is located in an agriculture–industrial area and is reflected in higher δ15N values in suspended matter and high nitrate concentrations in the late summer season.  相似文献   

9.
The perturbation of gamma-gamma angular correlations in the 1.17 ns 2+ state of154Gd has been studied by using the154Eu activity dissolved in 6N HClO4. Time differential measurements were performed at five different temperatures between 0 °C and ?80 °C. The environment remains in the liquid phase in the whole temperature range and the attenuation of the angular correlations can be described by the theory of Abragam and Pound5. The observed attenuation parameters λ2 and λ4 were used to derive separately the strengths of the magnetic dipole interaction and the electric quadrupole interaction between the nuclei and their environment. The observed temperature dependence of the magnetic dipole and electric quadrupole interaction strength can be understood by a simple model of the attenuation mechanism.  相似文献   

10.
The structure of neutron-rich nuclei in several isotopes is investigated by shell model calculations. We study the electric dipole (E1) transitions in C isotopes focusing on the interplay between the low-energy Pigmy strength and the giant dipole resonance (GDR). Reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C with the inclusion of the quenching effects. A low-energy peak in the dipole strength in 15C is associated with a single-particle motion of the 1s1/2 valence neutron relative to the 14C core. The calculated transition strength below the GDR in C isotopes heavier than 15C is found to exhaust about 50–80% of the cluster sum rule value and 12–16% of the classical Thomas-Reiche-Kuhn sum rule value. Next, we point out that the quadrupole and magnetic moments in the odd C isotopes strongly depend on configuration, which will be useful to determine the spin parities and the deformations of the ground states of these nuclei. The electric quadrupole (E2) transitions in even C isotopes are also studied. The isotopic dependence of the E2 transition strength is found to be reasonably well explained, although the calculated strength largely overestimates the unexpectedly small strength observed in 16C. The E1 strength in 18N and 19N as well as in Ne isotopes is also investigated.  相似文献   

11.
Abstract

Since the end of the 80s elemental analyzer-isotope ratio mass spectrometer connections have been used for the fast, automatic and highly precise determination of carbon and nitrogen content as well as their isotopic composition in one run. But for artificially enriched stable isotopes as tracer in biological processes and since these processes have a high biological variability anyway (e.g. soil processes) the use of these highly precise but also sophisticated and expensive instruments is not required. In this case the use of a quadrupole mass spectrometer connected with an elemental analyzer can offer a low cost alternative. As shown, such coupling is suitable for automatic simultaneous routine analysis of total nitrogen and carbon and their isotopic enrichment (15N, 13C) in plant material and soils. The relative standard deviation for 15N and 13C determination is 2% To meet this precision a careful sample homogenization by grinding is very important. The duration of one measurement is 6–8 min. depending on whether nitrogen alone or both nitrogen and carbon are determined. This enables a high sample throughput.  相似文献   

12.
Pig transferrin was enriched with57Fe isotopes and its Mössbauer spectra were recorded using a57Co source diffused into a rhodium matrix. The transferrin was examined in freeze-dried form, in solution and in a partially hydrated state. The spectra in the first two cases consist of two peaks, which were interpreted as quadrupole doublets. Hydrated transferrin exhibits a more complex spectrum which can fairly well be approximated by summing the spectra of dry and dissolved samples with nearly equal contributions. From this fact, it may be concluded that both the chemical shift and quadrupole splitting either for dissolved or for hydrated specimens are determined by the same amount of water molecules situated in the neighbourhood vicinity of the iron binding sites.  相似文献   

13.
The standard method for determining the 15N abundance of total dissolved nitrogen (TDN) in aqueous samples (e.g., soil leachate, sewage, urine) is currently Kjeldahl digestion followed by steam distillation or diffusion to isolate the ammonium, and then 15N measurement using IRMS. However, this technique is both time-consuming and laborious. One way of overcoming these disadvantages could be to couple a TOC analyser to determine the TDN with a sufficient quadrupole MS to determine the 15N abundance. The high TOC analyser (Elementar Analysensysteme Hanau, Germany), which catalytically oxidises the sample's total nitrogen with a high, constant yield to nitrogen monoxide (NO), appeared particularly suitable. The quadrupole-MS ESD 100 (InProcess Instruments Bremen, Germany) proved to be a suitable mass spectrometer for the 15N determination of NO. This combination of instruments was found to provide a workable method in numerous measurements of standard and actual samples. The detection limit concerning the N amount required per analysis is 2 microg, corresponding to an N concentration of 0.7 mg/l in a maximum sample volume of 3ml. Depending on the N concentration, 15N abundances starting from 0.5 at.% can be measured with the required precision of better than 3% (simple standard deviation). For example, measuring the abundance of 0.5 at.% requires about 50 microg N, whereas for 1 at.% or more only about 5 microg N is needed per analysis.  相似文献   

14.
The rotational spectrum of the morpholine–H2O complex was measured and assigned using a Balle–Flygare type FT microwave spectrometer. Rotational, quartic centrifugal distortion, and14N quadrupole coupling constants were determined, and a N … H–O hydrogen-bonded structure was found to be consistent with the derived molecular parameters. Additionally, the rotational spectrum of the13C and15N isotopomers of the morpholine monomer were measured in natural abundance to determine itsr0structure and a partial heavy atomrsstructure.  相似文献   

15.
Abstract

In estuarine ecosystems, large spatial and seasonal variations in δ13C values of primary producers can occur, and knowledge of these variations may be crucial when interpreting stable isotope data of higher trophic levels. Obtaining clean phytoplankton samples for isotope analysis is usually impossible in such systems, and analysis of total suspended matter is not a simple proxy for phytoplankton δ13C variations. Based on a few simple assumptions regarding the C and N content of the two end-members (terrestrial detritus and phytoplankton) and the δ13C of the terrestrial component, we here present a simple model to estimate the phytoplankton δ13C variations using an existing dataset on the δ13C and elemental (C:N) composition of suspended organic matter from an estuarine mangrove ecosystem in southeast India.

These variations are related to the monthly rainfall pattern during the sampling period. It is stressed that this method estimates approximate phytoplankton δ13C values, which should not be used in e.g., mixing models. However, we propose that in cases where sufficiently large datasets are available, the described procedure could provide a valuable method to semi-quantitatively estimate the seasonal or spatial variations of the phytoplankton δ13C signal.  相似文献   

16.
本文测定了2-三氟甲基吡啶在2∽20 GHz频率范围内的高分辨转动光谱. 测定了转动常数、14N核四极耦合常数及离心畸变常数等一系列光谱参数. 同时还在自然丰度下测定了5个13C和1个14N单取代同位素异数体的光谱数据. 实验结果结合从头算准确地推导出2-三氟甲基吡啶的骨架结构. 实验测得同位素异数体的平面转动惯量Pcc数值均为44.46 u?2,表明此分子具有Cs对称性. 此外,本文计算了吡啶、2-氟吡啶、2-甲基吡啶和2-三氟甲基吡啶的分子表面静电势,以此分析了三氟甲基的取代对电子分布的影响.  相似文献   

17.
Stable isotope analysis was applied to describe the poultry house environment. The poultry house indoor environment was selected for this study due to the relevant health problems in animals and their caretakers. Air quality parameters including temperature, relative humidity, airflow rate, NH3, CO2 and total suspended particles, as well as mean levels of total airborne bacteria and fungi count, were measured. Carbon isotope ratios (13C/12C) were obtained in size-segregated aerosol particles. The carbon (13C/12C) and nitrogen (15N/14N) isotope ratios were measured in feed, litter, scrapings from the ventilation system, feathers and eggs. Additionally, the distribution of δ13C and δ15N values in different tissues of the chicken was examined. The airborne bacteria and fungi extracted from the air filters collected from poultry farms were grown in the laboratory in media with known isotope values and measured for stable isotope ratios. Analysis of isotope fractionation between microorganisms and their media indicated the applicability of stable isotope analysis in bulk samples for the identification of source material. The analysed examples imply that stable isotope analysis can be used to examine the indoor environment along with its biology and ecology, and serve as an informative bioanalytical tool.  相似文献   

18.
Abstract

This paper was presented in poster form at the 17th International Congress of Nutrition, August 27-31, Vienna. Austria (Annals of Nutrition & Metabolism 2001; 45(Suppl.1):349). Some of the data were also presented in poster form at the British Society of Gastroenterology Meeting, March 18-21, Glasgow, UK (Gut 2001; 48(Suppl.1):A91).

The 13C-mixed triacylglycerol (MTG) breath test is used to measure intraluminal fat digestion. In normal digestion. 20–40% of the ingested 13C label is recovered in breath CO2. We aimed to identify the proportions of ingested label excreted in stool, as well as breath following ingestion of 13C-MTG by children with impaired exocrine pancreatic function and healthy controls. 13C enrichment of breath samples was measured by continuous flow isotope ratio mass spectrometry (IRMS) and cumulative percent dose recovered (cPDR) in 10 h was calculated. Total 13C of a faecal fat extract from each stool was measured by elemental analyser-IRMS, and 13C enrichment and concentration of the TBDMS derivative of octanoic acid was measured by GC/MS after hydrolysis of the fat extract. Stool 5-day cPDR was calculated. Mean breath cPDR was 35%. Mean cPDR in stool by combustion-IRMS and GC/ MS, respectively, was 0.8% and 1.0%. Therefore, the remaining 64% of the 13C label must remain in the body and variability in breath cPDR is due to postabsorptive rather than predigestive factors.  相似文献   

19.
The accurate measurement of small spin–spin coupling constants in macromolecules dissolved in a liquid crystalline phase is important in the context of molecular structure investigation by modern liquid state NMR. A new spin-state-selection filter, DIPSAP, is presented with significantly reduced sensitivity to J-mismatch of the filter delays compared to previously proposed pulse sequences. DIPSAP presents an attractive new approach for the accurate measurement of small spin–spin coupling constants in molecules dissolved in anisotropic solution. Application to the measurement of 15N–13C′ and 1HN13C′ coupling constants in the peptide planes of 13C, 15N labeled proteins demonstrates the high accuracy obtained by a DIPSAP-based experiment.  相似文献   

20.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号