首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The isotopic compositions of carbon compounds in landfill leachate provide insights into the biodegradation pathways that dominate the different stages of waste decomposition. In this study, the carbon geochemistry of different carbon pools, environmental stable isotopes and compound-specific isotope analysis (CSIA) of leachate dissolved organic carbon (DOC) fractions and gases show distinctions in leachate biogeochemistry and methane production between the young area of active waste emplacement and the old area of historical emplacement at the Trail Road Landfill (TRL). The active area leachate has low DOC concentrations (<200 mg l(-1)) dominated by fulvic acid (FA=160 mg l(-1)), and produces CH(4) dominantly by CO(2) reduction (D- excess=20.6 per thousand). Leachate generated in the area of older waste has high DOC (>4770 mg l(-1)) dominated by FA (4482 mg l(-1)) and simple fatty acids (acetic=1008 mg l(-1) and propionic=608 mg l(-1)), and produces CH(4) by the acetate fermentation pathway (D- excess=9.8 per thousand). CSIA shows an advanced degradation and a progressive accumulation of (13)C of fatty acids in leachate from the older area. The enriched (13)C value of FA (-20 and-26 per thousand for the older and active parts, respectively,) and of low molecular weight DOC (-8 and-27 per thousand) as well as of the bulk DOC (-21 and-25 per thousand) shows more advanced degradation in the older part of the landfill, which is consistent with the shift in the humic/FA ratios (0.05 and 0.18). The (13)C enrichment of acetate (-12 per thousand) above the (13)C of DOC (-21 per thousand) and of propionic acid (-19 per thousand), in older leachate, suggests that this acetate has not evolved from the simple degradation of larger organic molecules, but by homoacetogenesis from the enriched dissolved inorganic carbon (DIC) pool (8 per thousand) and H(2,) which produce a more enriched (13)C of acetate. In contrast, the (13)C of the minor acetate in the active area (-17 per thousand) indicates that CO(2)-reducing bacteria must be the primary consumers of H(2), which has resulted in enriched (13)C(DIC) (10 per thousand) and depleted (13)C(CH4) (-58 per thousand).  相似文献   

2.
垃圾渗滤液中溶解性有机物组分的三维荧光特性   总被引:2,自引:0,他引:2  
运用三维荧光光谱技术研究了垃圾渗滤液中六种DOM组分的荧光特性。结果表明:类富里酸、类色氨酸和腐殖酸类物质是垃圾渗滤液DOM的主要组成,其中大量紫外区类富里酸物质的存在,是导致其可生化性差的主要原因。HOA含有较多紫外区类富里酸和较少可见区类富里酸,HIA正好相反;HIN组分主要包括紫外区和可见区类富里酸;HOB、HIB和HIN三种组分在各区域荧光信号都较强,包括HON组分在内,这四种组分荧光峰位置主要集中在类腐殖酸、紫外区类富里酸及可见区类富里酸三个区域;但不同组分的荧光强度差别较大,HOB和HIB在紫外区类富里酸有较强荧光强度,HIN在紫外区类富里酸、可见区类富里酸区域均有较强荧光强度;与这三者相比,HON在各位置的荧光信号中等;而HOA和HIA的荧光强度相对较弱,说明有机酸类物质的荧光特性较差。  相似文献   

3.
Stable isotopes of water (δ2H, δ18O) and δ13CTIC were used as a tool to trace the recharge processes, natural carbon (organic and inorganic) source and dynamics in the aquifers of the central Gangetic basin, India. Stable isotope (δ2H, δ18O) record of groundwater (n?=?105) revealed that the groundwater of Piedmont was recharged by meteoric origin before evaporation, while aquifers of the older and younger alluvium were recharged by water that had undergone evaporation loss. River Ganges and its tributaries passing through this area have very little contribution in recharging while ponds play no role in the recharging of adjacent aquifers. The connectivity of shallow aquifers of aquitard formation (comprised of clay/sandy clay with thin patches of fine grey sand), i.e. 25–60?m below ground level (bgl) with the main upper aquifer (at a depth of >120?m?bgl) was found to be higher in older and younger alluvium. Negative values of δ13CTIC (median ?9.6 ‰; range ?13.2 to ?5.4 ‰) and high TIC (median 35?mM; range 31–46?mM) coupled with low TOC (median 1.35?mg/L; range 0.99–1.77?mg/L) indicated acceleration in microbial activity in the younger alluvium, especially in the active floodplain of river Ganges and its proximity.  相似文献   

4.
ABSTRACT

Particulate matter (PM) from atmospheric aerosols contains carbons that are harmful for living organisms and the environment. PM can originate from vehicle emissions, wearing of vehicle components, and dust. Size and composition determine PM transport and penetration depth into the respiratory system. Understanding PM emission characteristics is essential for developing strategies to improve air quality. The number of studies on carbon isotope composition (13C/12C) of PM samples to characterise emission factors has increased. The goal of this review is to integrate and interpret the findings from 13C/12C carbon isotope ratio (δ13C, ‰) analyses for the most common types of emission sources. The review integrates data from 25 studies in 13 countries. The range of δ13C of PM from vehicle emissions was from ?28.3 to ?24.5?‰ and for non-vehicle anthropogenic emissions from ?27.4 to ?23.3?‰. In contrast, PM ranges for δ13C from biomass burning sources differed markedly. For C3 plants, δ13C ranged from ?34.7 to ?25.4?‰ and for C4 plants from ?22.2 to ?13.0?‰. The 13C/12C isotope analysis of PM is valuable for understanding the sources of pollutants and distinguishing vehicle emissions from biomass burning. However, additional markers are needed to further distinguish other anthropogenic sources.  相似文献   

5.
Arctic and sub-arctic watersheds are undergoing significant changes due to recent climate warming and degrading permafrost, engendering enhanced monitoring of arctic rivers. Smaller catchments provide understanding of discharge, solute flux and groundwater recharge at the process level that contributes to an understanding of how larger arctic watersheds are responding to climate change. The North Klondike River, located in west central Yukon, is a sub-alpine permafrost catchment, which maintains an active hydrological monitoring station with a record of >40 years. In addition to being able to monitor intra-annual variability, this data set allows for more complex analysis of streamflow records. Streamflow data, geochemistry and stable isotope data for 2014 show a groundwater-dominated system, predominantly recharged during periods of snowmelt. Radiocarbon is shown to be a valuable tracer of soil zone recharge processes and carbon sources. Winter groundwater baseflow contributes 20?% of total annual discharge, and accounts for up to 50?% of total river discharge during the spring and summer months. Although total stream discharge remains unchanged, mean annual groundwater baseflow has increased over the 40-year monitoring period. Wavelet analysis reveals a catchment that responds to El Niño and longer solar cycles, as well as climatic shifts such as the Pacific Decadal Oscillation.

Dedicated to Professor Peter Fritz on the occasion of his 80th birthday  相似文献   

6.
7.
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ13C–CO2 and δ18O–CO2 increased, while δ2H–H2Ov and δ18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.  相似文献   

8.
Plitvice Lakes waters were collected at 14 sampling points, including springs, tributaries and lakes, for the period 2002–2007. The results of the physical and chemical conditions of calcite precipitation as well as the δ13C values of dissolved inorganic carbon (DIC) were used to study the processes influencing calcite precipitation. Significant differences between spring, lake and stream waters as well as changes in the downstream direction were observed. The correlation between δ13CDIC values and physico-chemical conditions for calcite precipitation showed that calcite precipitates in lake waters which are oversaturated with respect to CaCO3 (I sat values 4–10) and with δ13CDIC values between?11.5 and?8.5 ‰. In spring waters, the δ13CDIC values were more negative, from?14 to?12 ‰, and I sat values of 1–2 indicated that equilibrium conditions for calcite precipitation were not attained. The downstream increase in δ13CDIC correlated with the increase in the δ13C values of calcite in the lake sediments, suggesting that the freshwater calcite was mainly of autochthonous origin and precipitated within the water column in isotopic equilibrium with DIC.  相似文献   

9.
A combined system consisting of a TOC analyser connected to a quadrupole MS was recently described as a way of measuring the N content and the 15N abundance of total dissolved nitrogen in aqueous samples. This work examines whether this combination of instruments can also be used for the 13C determination of the total dissolved carbon in aqueous samples. A level of precision good for 13C-enriched samples was achieved with a relative standard deviation of <3%. By using an isotope ratio MS instead of the quadrupole MS employed here, TOC-MS coupling also ought to be suitable for determining natural 13C abundances.  相似文献   

10.
This paper presents the results of hydrological, physicochemical, biological, and isotopic investigations of the Danube River along the stretch through Serbian territory conducted during four campaigns in September and November 2007, September 2008 and April 2009. The stable isotope values exhibited significant changes both in the Danube (?10.7 to?9.5‰ for δ18O and?73.7 to?67.1 ‰ for δ2H) and in its tributaries (?9.1 to?8.5‰ for δ18O and?69.4 to?59.4‰ for δ2H) depending on the time of survey, which could be partly attributed to the influences of seasonal effects. Results emphasise the dominant role of tributaries inflows from aquifers along the Danube. The very narrow range of δ13CPOC (from?28.9 to?27.4 ‰) was associated with relatively high C/N ratios (C/N>9), and together with δ15NTPN values, the date suggested that, in early spring, a major fraction of particulate organic matter was derived from allochthonous matter. An orthogonal varimax rotation of the principal components analysis identified four latent factors (‘mineral related’, ‘biological’, ‘hardness’, and ‘soil inlets’) which are responsible for the data structure covering 79% of the observed variations among the variables studied. A reliable grouping of samples with respect to the season was found.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号