共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamara Hunjak Hans O. Lutz Zvjezdana Roller-Lutz 《Isotopes in environmental and health studies》2013,49(3):336-345
The precipitation is the input into the water system. Its stable isotope composition has to be known for the proper use and management of water resources. Croatia is not well represented in the Global Network of Isotopes in Precipitation (GNIP) database, and the geomorphology of the country causes specific local conditions. Therefore, at the Stable Isotope Laboratory (SILab), Rijeka, we monitor the stable isotope composition (δ18O, δ2H) of precipitation. Since δ18O and δ2H are well correlated, we concentrate the discussion on the δ18O distribution. Together with GNIP, our database contains 40 stations in Croatia and in the neighbouring countries. Their different latitudes, longitudes and altitudes give information of great detail, including the influence of the topographic structure on the precipitation in the south-eastern part of Europe, as well as the complex interplay of the different climate conditions in the area. Within a few hundred kilometres, the stable isotope values display a significant change from the maritime character in the south (mean δ18O around?6 to?8%‰) to the continental behaviour in the north (mean δ18O around?8 to?11%‰). Depending on the location, the mean δ18O values vary with altitude at a rate of approximately?0.2%‰/100 m and?0.4%‰/100 m, respectively. Also the deuterium excess has been found to depend on location and altitude. The data are being used to construct a δ18O map for the entire area. 相似文献
2.
Use of isotopes to study floodplain wetland and river flow interaction in the White Volta River basin,Ghana 总被引:1,自引:0,他引:1
Benjamin Kofi Nyarko Moses J. Eghan Barbara Reichert Nick van de Giesen Paul Vlek 《Isotopes in environmental and health studies》2013,49(1):91-106
Floodplain wetlands influence the timing and magnitude of stream responses to rainfall. In managing and sustaining the level of water resource usage in any river catchment as well as when modelling hydrological processes, it is essential that the role of floodplain wetlands in stream flows is recognised and understood. Existing studies on hydrology within the Volta River basin have not adequately represented the variability of wetland hydrological processes and their contribution to the sustenance of river flow. In order to quantify the extent of floodwater storage within riparian wetlands and their contribution to subsequent river discharges, a series of complementary studies were conducted by utilising stable isotopes, physical monitoring of groundwater levels and numerical modelling. The water samples were collected near Pwalugu on the White Volta River and at three wetland sites adjacent to the river using the grab sampling technique. These were analysed for 18O and 2H. The analysis provided an estimate of the contribution of pre-event water to overall stream flow. In addition, the variation in the isotopic composition in the river and wetland water samples, respectively, revealed the pattern of flow and exchange of water between the wetlands and the main river system. 相似文献
3.
Dieter Rank Katharina Schott Silvia Weigand Armin Oblin 《Isotopes in environmental and health studies》2018,54(2):115-136
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3H values were around 8 TU in 2015, short-term 3H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006–2015 supplement adding to the Danube isotope set published earlier. 相似文献
4.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater. 相似文献
5.
Congjian Sun Yaning Chen Weihong Li Randy L. Stotler Yongqing Zhang 《Isotopes in environmental and health studies》2016,52(3):281-297
By using 233 isotope samples, we investigated the spatial and temporal variations of δ18O and δ2H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ18O and δ2H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ18O and δ2H showing a distinct seasonal pattern with lower isotope values in May than in September. Higher d-excess values throughout the year in the Aksu river and the Tizinafu river suggest that water may be intensively recycled in the mountains of the TRB. Based on isotopic hydrograph separation, we found that groundwater is the main water source that discharges the entire basin although individual rivers vary. 相似文献
6.
The characterisation of 45 Romanian single-strength fruit juices (apples, pears, plums and grapes) collected from different Transylvanian areas by means of stable isotope approach are presented and discussed in this study. We measured 2H/1H, 18O/16O ratios from water juice and 13C/12C from pulp and compared these results with those already reported in the literature for single-strength juices, in order to see how the geographical and climatic conditions of Transylvania and the meteorological peculiarities of the year 2010 influence the isotopic composition of the investigated fruit juices. The δ13C mean values that we found for apple pulp picked up from different Transylvanian areas show slight differences, probably due to the environmental conditions of the plants. No significant correlation either between the variety of apple or the geographical origin and δ13C value was established. 相似文献
7.
Khaled Osati Ali Salajegheh Mohammad Mahdavi Kamran Chapi Arash Malekian 《Isotopes in environmental and health studies》2014,50(2):169-183
Karst springs of the Zagros Mountains contribute a significant amount to agricultural and human water demands of western and south-western Iran. For an adequate management of available water resources in semi-arid and arid regions, sufficient hydrological monitoring is needed, and hydro-chemical and isotope hydrological data provide important additional information. About 350 water samples were collected from precipitation, river water, and karst springs of the upper part of the Karkheh River Basin (20,895 km2) located between 33°35′ and 34°55′ North and 46°22′ and 49°10′ East with elevations ranging from 928 to 3563 m above sea level. Sampling was conducted in monthly time resolution from August 2011 to July 2012. All samples were analysed for hydro-chemical parameters (pH, electrical conductivity, and major ions) and stable isotopes (deuterium, oxygen-18). Isotope values of precipitation indicate a local meteoric water line (Zagros MWL δ2H=6.8 δ18O+10.1; R2=0.99) situated between the Mediterranean MWL and Global MWL. Spring and river water isotope values vary between?7.1 and?4.1 ‰, and?38 and?25 ‰ for δ18O and δ2H, respectively, responding to winter snowmelt and evaporation. This work implements stable isotopes and hydro-chemical information of springs and river water to understand hydrological and hydro-geological interrelations in karstic semi-arid areas and helps to improve the current water resources management practices of western Iran. 相似文献
8.
Ioannis Matiatos Apostolos Alexopoulos 《Isotopes in environmental and health studies》2013,49(4):512-529
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes (18O, 2H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using 18O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of?0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ18O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish. 相似文献
9.
Alexandra Gemitzi Kyriakos Stefanopoulos Marie Schmidt Hans H. Richnow 《Isotopes in environmental and health studies》2014,50(1):74-87
The present study investigates the complex interactions among surface waters, groundwaters and a coastal lake in northeastern Greece, using their stable isotopic composition (δ18O, δ2H) in combination with hydrogeological and hydrochemical data. Seasonal and spatial trends of water isotopes were studied and revealed that all water bodies in the study area interact. It was also shown that the aquifer's increased salinity is not due to fossil water from past geological periods, but is attributed to brackish lake water intrusion into the aquifer induced by the extensive groundwater pumping for irrigation purposes. Quantification of the contribution of the lake to the aquifer was achieved using the simple dilution formula. The isotopic signatures of the seawater and the groundwaters are considerably different, so there is a very little possibility of direct seawater intrusion into the aquifer. 相似文献
10.
Gerhard Strauch Khalid S. Al-Mashaikhi Abdullah Bawain Kay Knöller Jan Friesen Thomas Müller 《Isotopes in environmental and health studies》2014,50(4):475-490
Due to the ability of stable water isotopes to characterize the origin of water and connected processes of groundwater recharge, we used the isotope variations of hydrogen and oxygen in different water sources for assessing the recharge process in the Dhofar region. δ18O and δ2H of precipitation, spring water, and groundwater cover a range from ?10 to +2 and from ?70 to +7?‰ (vs Vienna Standard Mean Ocean Water), respectively, and correlate in a linear relationship close to the Global Meteoric Water Line. No obvious evaporation processes are detected. A clear signal of the recent precipitation is given by the annual monsoon. The monsoon signal is confirmed by several springs existing in the south at the foot of the Dhofar mountains and sources at Gogub above 450?m and Tawi Atir at 650?m above sea level. They occur here first in the form of water intercepted by trees as stemflow and throughflow. The isotope signature of groundwater in the Dhofar mountains reflects the climatic conditions at the time of recharge and the lithological features of the limestone matrix. To the north, the isotope patterns of the groundwater are continuously depleted from the monsoon signal along the outcropping aquifer D (Lower Umm Er Radhuma). Here, a more negative signature towards the wells in the Najd desert region was observed. Cyclone water that flooded wadis in the Dhofar region occasionally, as observed in November 2011, falls isotopically into the same range as we observed in the fossil groundwater. Taking into account the different sources of precipitation and groundwater and thus a clear distinction of the isotopic composition of the water sources, we conclude a recharge process divided into a southward and a northward component in the Dhofar region. 相似文献
11.
Martina Burnik Šturm Oyunsaikhan Ganbaatar Christian C. Voigt Petra Kaczensky 《Isotopes in environmental and health studies》2017,53(2):157-171
For certain remote areas like Mongolia, field-based precipitation, surface and ground water isotopic data are scarce. So far no such data exist for the Mongolian Gobi desert, which hinders the understanding of isotopic fractionation processes in this extreme, arid region. We collected 26 event-based precipitation samples, 39 Bij river samples, and 75 samples from other water bodies in the Dzungarian Gobi in SW Mongolia over a period of 16 months for hydrogen and oxygen stable isotope analysis. δ2H and δ18O values in precipitation show high seasonal variation and cover an extreme range: 175?‰ for δ2H and 24?‰ for δ18O values. The calculated local meteoric water line (LMWL) shows the isotopic characteristics of precipitation in an arid region. Individual water samples fall into one of three groups: within, above or below the 95?% confidence interval of LMWL. Data presented provide a basis for future studies in this region. 相似文献
12.
Yuri V. Dublyansky Alexander B. Klimchouk Sergey V. Tokarev Gennady N. Amelichev Christoph Spötl 《Isotopes in environmental and health studies》2013,49(5):419-437
ABSTRACTKarst springs in the Main Range of the Crimean Mountains and the Crimean Piedmont show a restricted range of values (δ18O?=?–10.5 to –8.0 ‰, δ2H?=?–72 to –58 ‰), somewhat more negative than the weighted mean of meteoric precipitation. This suggests preferential recharge at higher elevations during winter months. Groundwater tapped by boreholes splits in three groups. A first group has isotopic properties similar to those of the springs. The second group shows significantly lower values (δ18O?=?–13.3 to –12.0 ‰, δ2H?=?–95 to –82 ‰), suggesting recharge during colder Pleistocene times. The third group has high isotope values (δ18O?=?–2.5 to +1.0 ‰, δ2H?=?–24 to –22 ‰); the data points are shifted to the right of the Local Meteoric Water Line, suggesting water–rock exchange processes in the aquifer. These boreholes are located in the Crimean Plains and discharge mineralized (ca. 25 g L?1) thermal (65°C) water from a depth of 1600–1800 m. Groundwater associated with mud volcanoes on the Kerch peninsula have distinct isotope characteristics (δ18O?=?–1.6 to +9.4 ‰, δ2H?=?–30 to –18 ‰). Restricted δ2H variability along with variable and high δ18O values suggest water–rock interactions at temperatures exceeding 95 °C. 相似文献
13.
Chunhua Hu Klaus Froehlich Peng Zhou Qian Lou Simiao Zeng 《Isotopes in environmental and health studies》2013,49(2):188-196
Based on the monthly δ18O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ18O in precipitation (δ18OPPT) and runoff (δ18OSUR) are discussed. The δ18OPPT and δ18OSUR values range from?2.75 to?14.12 ‰ (annual mean value=?7.13 ‰ ) and from?2.30 to?8.56 ‰, respectively. The seasonal variation of δ18OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ18OSUR in runoff of the rivers and δ18OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period. 相似文献
14.
Simin Qu Minmin Zhou Peng Shi Han Liu Weimin Bao Xi Chen 《Isotopes in environmental and health studies》2014,50(1):52-61
Inter-storm stable isotopic values of rainfall and throughfall for three flooding events were measured during the period of July to August 2011 to estimate their differences in a first-order chestnut watershed, Meilin, within the Taihu Lake basin. Comparison of δ2H and δ18O was conducted from four aspects: (1) sampling methods, (2) calculation methods, (3) stable isotopes and (4) flood events. Arithmetic and weighted incremental values of throughfall were generally lighter than those of rainfall. Isotopic composition of both incremental rainfall and throughfall exhibits marked temporal variation, particularly during large storm events; the former shows a higher variation than the latter. Differences of averaged precipitation and throughfall between storms were small, but individual storm variations were larger. Isotopic differences using different calculation methods are not significant; however, the differences resulting from sampling methods are of greater importance. 相似文献
15.
Guilin Han Pin Lv Yang Tang Zhaoliang Song 《Isotopes in environmental and health studies》2018,54(2):137-146
Ratios of stable isotopes of hydrogen and oxygen (2H/1H and 18O/16O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ2H and δ18O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ18O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2H and 18O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River. 相似文献
16.
Chiara Marchina Kay Knoeller Claudio Natali Maddalena Pennisi Nicolò Colombani 《Isotopes in environmental and health studies》2016,52(6):649-672
Po is the main Italian river and the δ18O and δ2H of its water reveal a similarity between the current meteoric fingerprint and that of the past represented by groundwater. As concerns the hydrochemisty, the Ca–HCO3 facies remained constant over the last 50 year, and only nitrate significantly increased from less than 1?mg/L to more than 10?mg/L in the 1980s, and then attenuated to a value of 9?mg/L. Coherently, δ13CDIC and δ34SSO4 are compatible with the weathering of the lithologies outcropping in the basin, while extremely variable δ15NNO3 indicates contribution from pollutants released by urban, agricultural and zootechnical activities. This suggests that although the origin of the main constituents of the Po river water is geogenic, anthropogenic contributions are locally significant. Noteworthy, the associated aquifers have the same nitrogen isotopic signature of the Po river, but are characterized by significantly higher NO– 3 concentration. This implies that aquifers’ pollution is not ascribed to inflow of current river water, and that the attenuation of the nitrogen load recorded in the river is not occurring in the aquifers, due to their longer water residence time and delayed recovery from anthropogenic contamination. 相似文献
17.
Dietmar Haendel Reiner Höfling Peter Kowski 《Isotopes in environmental and health studies》2013,49(4):402-406
In 1983/1984, in the course of the 28th Soviet Antarctic Expedition, waterbody, ice cover, and surrounding glaciers of the lakes Untersee and Obersee were sampled along some depth profiles. The geochemical data of those samples, now available, show the homogeneity of both large lakes in vertical (down to the maximum depth) as well as in lateral directions. The comparison of isotope and chemical composition of lake water and adjoining glacier ice suggests strong differences in the long-term evolution between the lakes Untersee and Obersee. First data from a lakelet, embedded in the large morainic area to the west of Lake Untersee, are of special interest: the δ2H values of the lakelet water are lower than those of recent regional glacier ice by 50‰ SMOW. This fact indicates that the lakelet is fed episodically by Pleistocene dead ice, covered by the morainic material. 相似文献
18.
Tatjana Mitrović Vesna Obradović Dušan Golobočanin Nives Ogrinc 《Isotopes in environmental and health studies》2013,49(2):166-179
This paper presents the results of hydrological, physicochemical, biological, and isotopic investigations of the Danube River along the stretch through Serbian territory conducted during four campaigns in September and November 2007, September 2008 and April 2009. The stable isotope values exhibited significant changes both in the Danube (?10.7 to?9.5‰ for δ18O and?73.7 to?67.1 ‰ for δ2H) and in its tributaries (?9.1 to?8.5‰ for δ18O and?69.4 to?59.4‰ for δ2H) depending on the time of survey, which could be partly attributed to the influences of seasonal effects. Results emphasise the dominant role of tributaries inflows from aquifers along the Danube. The very narrow range of δ13CPOC (from?28.9 to?27.4 ‰) was associated with relatively high C/N ratios (C/N>9), and together with δ15NTPN values, the date suggested that, in early spring, a major fraction of particulate organic matter was derived from allochthonous matter. An orthogonal varimax rotation of the principal components analysis identified four latent factors (‘mineral related’, ‘biological’, ‘hardness’, and ‘soil inlets’) which are responsible for the data structure covering 79% of the observed variations among the variables studied. A reliable grouping of samples with respect to the season was found. 相似文献
19.
Silvina C. Carretero Cristina Dapeña Eduardo E. Kruse 《Isotopes in environmental and health studies》2013,49(3):399-419
This contribution presents the hydrochemical and isotopic characterisation of the phreatic aquifer located in the Partido de la Costa, province of Buenos Aires, Argentina. In the sand-dune barrier geomorphological environment, groundwater is mainly a low-salinity Ca-HCO3 and Na-HCO3-type, being in general suitable for drinking, whereas in the continental plain (silty clay sediments), groundwater is a Na-Cl type with high salinity and unsuitable for human consumption. The general isotopic composition of the area ranges from?6.8 to?4.3 ‰ for δ18O and from?39 to?21 ‰ for δ2H, showing that rainwater rapidly infiltrates into the sandy substrate and reaches the water table almost without significant modification in its isotopic composition. These analyses, combined with other chemical parameters, made it possible to corroborate that in the eastern area of the phreatic aquifer, there is no contamination from marine salt water. 相似文献
20.
Fantine Nivet Laurent Bergonzini Pierre-Etienne Mathé Aurélie Noret Gaël Monvoisin Amos Majule 《Isotopes in environmental and health studies》2018,54(4):352-369
Tropical rainfall isotopic composition results from complex processes. The climatological and environmental variability in East Africa increases this complexity. Long rainfall isotope datasets are needed to fill the lack of observations in this region. At Kisiba Masoko, Tanzania, rainfall and rain isotopic composition have been monitored during 6 years. Mean year profiles allow to analyse the seasonal variations. The mean annual rainfall is 2099?mm with a rain-weighted mean composition of ?3.2?‰ for δ18O and ?11.7?‰ for δ2H. The results are consistent with available data although they present their own specificity. Thus, if the local meteoric water line is δ2H?=?8.6 δ18O?+?14.8, two seasonal lines are observed. The seasonality of the isotopic composition in rain and deuterium excess has been compared with precipitating air masses backtracking trajectories to characterize a simple scheme of vapour histories. The three major oceanic sources have two moisture signatures with their own trajectory histories: one originated from the tropical Indian Ocean at the beginning of the rainy season and one from the Austral Ocean at its end. The presented isotopic seasonality depends on the balance of the intertropical front and provides a useful dataset to improve the knowledge about local processes. 相似文献