首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus pentachloride reacts with BF3 · NH3 to give [Cl3P?N? PCl3][BCl4](Va). Mechanism of formation and chemical behaviour to SO2 and H2S are described, followed by a presentation and discussion of the 31P, 19F, and 11B NMR spectra of the adducts formed by P2NOCl5 and BF3, BCl3, and PF5, respectively.  相似文献   

2.
Reaction of F3B · NH(CH3)2 with PCl5 yields [(CH3)2NPCl3][BCl4] (I), which can also be obtained by reaction of [(CH3)2NBCl2]2 with PCl5. In BF3 · N(CH3)3 the fluorine atoms are exchanged with chlorine atoms, by PCl5, 31P, 19F, and 11B-NMR spectra of the reactions products are described and discussed.  相似文献   

3.
Products of the reaction between CH3N(PCl3)(BCl3) and AsF3 are BF3, AsCl3 and N,N′-dimethyldiazafluorophosphetidine IV. [(CH3)2NPCl3][BCl4] reacts with AsF3 to give dimethylaminotetrafluorophosphorane VI. Preparation and NMR data of IV and VI are given.  相似文献   

4.
Alkyl(aryl)diaminofluorophosphonium Salts . Alkyl(aryl)diaminodifluoro phosphoranes react with BF3 · O(C2H5)2 or [(C2H5)3O]BF4 to yield alkyl(aryl)diaminofluorophosphonium tetrafluoroborates. t-Butyl-bis(methylamino)-difluorophosphorane forms with C6H5PCl2 or PCl3 [t-C4H9PF(NHCH3)2]Cl, phenylbis(diethylamino)-difluorophosphorane with SbF5 {C6H5PF[N(C2H5)2]2}SbF6. {CH3PF[N(CH3)2]2}Cl is the product of the reaction between methylene bis(dimethylamino)fluorophosphorane and trimethylchlorosilane. The new compounds are characterized by their NMR and vibration spectra.  相似文献   

5.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

6.
Phenyl Phosphonic Bis(methylamide) and its Reactions with Phosphorus (III) Halides Preparation of phenyl phosphonic bis(methylamide), I , from phenyl phosphonic dichloride and methylamine is described. I is characterized by its nmr, mass, and vibration spectra and by its reactions with PCl3, CH3PCl2, and C6H5PCl2. The two reactions mentioned last yield C6H5P(O)[N(CH3)P(CH3)Cl]2 ( IIIa ) and C6H5P(O)[N(CH3)P(C6H5)Cl]2 ( IIIb ), respectively.  相似文献   

7.
The title compound, [Ru2(C13H11N2)3(C2H3O2)(C2H3N)]BF4·0.5CH2Cl2 or [Ru2(μ‐DPhF)3(μ‐O2CMe)(MeCN)]BF4·0.5CH2Cl2, where DPhF is N,N′‐diphenyl­formamidinate, crystallized as dark‐blue block‐shaped crystals. In the unit cell, the diruthenium cation lies on a general position, and the BF4 anions reside on two independent special positions with crystallographic twofold symmetry. Disorder was observed for one of the phenyl groups in the formamidinate ligand, the axial aceto­nitrile mol­ecule and the interstitial di­chloro­methane mol­ecule. The compound, which exhibits a long Ru—Ru bond of 2.4131 (5) Å, is the first {Ru2}5+ formamidin­ate species that is both equatorially and axially functionalized so that it can be used as a precursor for polymeric paramagnetic supramolecular assemblies.  相似文献   

8.
Aluminium trichloride forms the adducts AlCl3 · NH2CH3, AlCl3 · 2NH2CH3, AlCl3 · 4NH2CH3; AlCl3 · NH3CH3Cl, AlCl3 · 2NH3CH3Cl. The interaction between AlCl3, PCl5 and NH3CH3Cl in the molar ratio 1:3:2 proceeds according to the reaction equation in “Inhaltsübersicht”. On applying other stoichiometric amounts, [Cl2(NHCH3)P? N(CH3)? AlCl3] · HCl and [Cl3P? N(CH3)? AlCl3] · HCl are obtained; the latter reacts as [Cl3P? NHCH3][AlCl4]. At the molar ratio AlCl3:PCl5:NH3CH3Cl = 1:2:4 a compound is formed being presumably the six-membered heterocycle formulated in “Inhaltsübersicht”. With [Cl3P?N? PCl3] and aluminium chloride [Cl3P?N? PCl3][AlCl4] is formed.  相似文献   

9.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

10.
The reaction of acetylferrocene [Fe(η‐C5H5)(η‐C5H4COCH3)] (1) with (2‐isopropyl‐5‐methylphenoxy) acetic acid hydrazide [CH3C6H3CH(CH3)2OCH2CONHNH2] (2) in refluxing ethanol gives the stable light‐orange–brown Schiff base 1‐[(2‐isopropyl‐5‐methylphenoxy)hydrazono] ethyl ferrocene, [CH3C6H3CH(CH3)2OCH2CONHN?C(CH3)Fe(η‐C5H5)(η‐C5H4)] (3). Complex 3 has been characterized by elemental analysis, IR, 1H NMR and single crystal X‐ray diffraction study. It crystallizes in the monoclinic space group P21/n, with a = 9.6965(15), b = 7.4991(12), c = 29.698(7) Å, β = 99.010(13) °, V = 2132.8(7) Å3, Dcalc = 1.346 Mg m?3; absorption coefficient, 0.729 mm?1. The crystal structure clearly shows the characteristic [N? H···O] hydrogen bonding between the two adjacent molecules of 3. This acts as a bidentale ligand, which, on treatment with [Ru(CO)2Cl2] n, gives a stable bimetallic yellow–orange complex (4). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Contributions to the Chemistry of Organo Transition Metal Compounds. 55. Preparation and Properties of Niobocenium and Tantalocenium Salts — Crystal and Molecular Structure of [(C5H5)2NbCl2][BF4] · CH3CN Niobocenium and tantalocenium compounds of the type [(C5H5)2MCl2]X (X = BF4, PBh4, PF6) were synthesized from the metallocene dichlorides and ferricenium salts, [(C5H5)2Fe]X, in methylene dichloride or tetrahydrofuran. With acetonitrile as solvent [(C5H5)2MCl2]X · CH3CN complexes are formed. Stable methyl compounds of the type [(C5H5)2M(CH3)2]X were obtained, when (C5H5)2Ta(CH3)2 is oxidized by means of ferricenium salts. The new complexes were characterized by elemental analysis, i. r., and 1H n.m.r. spectra. The structure of [(C5H5)2NbCl2][BF4] · CH3CN has been determined by X-ray structure analysis. The compound crystallizes in the orthorhombic space group Cmcm with a = 8.324(12), b = 19.581(13), c = 9,563(8) Å and Z = 4. The coordination geometry of the Nb atom is tetrahedrally.  相似文献   

12.
In the title compound, [Sb(CH3)(C6H5)3]BF4, there are four independent cations and anions in the asymmetric unit. The geometry around the Sb atom is distorted tetrahedral, with Sb—C distances in the range 2.077 (4)–2.099 (10) Å and angles at the Sb atom in the range 103.3 (3)–119.0 (4)°.  相似文献   

13.
Quantum calculations at the MP2/aug‐cc‐pVDZ level are used to analyze the SH···N H‐bond in complexes pairing H2S and SH radical with NH3, N(CH3)3, NH2NH2, and NH2N(CH3)2. Complexes form nearly linear H‐bonds in which the S? H covalent bond elongates and shifts its stretching frequency to the red. Binding energies vary from 14 kJ/mol for acceptor NH3 to a maximum of 22 kJ/mol for N(CH3)3 and N(CH3)2NH2. Analysis of geometric, vibrational, and electronic data indicate that the SH···N interaction involving SH is slightly stronger than that in which the closed‐shell H2S serves as donor. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Zusammenfassung BCl3, BBr3 und C6H5BCl2 reagieren mit ClCN und BrCN zu hochhalogenierten Bis(methylenaminoboranen). Isocyaniddichloride vom Typ RNCCl2 (R=C6H5 und C2H5) bilden mit BCl3 und BBr3 Addukte. Die IR-Spektren der Cyclodiborazanderivate werden zugeordnet. BF3 reagiert nicht.
BCl3, BBr3 and C6H5BCl2 react with ClCN and BrCN to yeald bis(methyleneaminoboranes). C6H5NCCl2 and C2H5NCCl2 give adducts with BCl3 and BBr3. Frequencies in the IR-spectra of the cyclodiborazane derivatives are assigned. No reactions are observed with BF3.
  相似文献   

15.
N-Diphenylphosphino-triphenylphosphazene possesses a highly reactive (C6H5)2P group. At room temperature CH3J adds to give (C6H5)3P?N?P(C6H5)2CH 3J whilst phenylbromide did not react under similar conditions. The phosphorous halides (C6H5)2PX(X = Cl, Br)add in a 1:1 mole ratio to yield (C6H5)3P?N?P(C6H5)2? PC6H5)2X; this addition is also the preferred reaction with C6H5PCl2, but PCl3 is in part dehalogenated by (C6H5)3P?N? P(C6H5)2, and PSCl3 desulfurized. The chalcogens O, S, Se, Te readily add to the P(III) atom of the base and this is also the case with BH3. CS2 forms the betaine (C6H5)3 · · P?N? P(C6H5)2? C(S)S. The IR and NMR spectra of the new compounds are discussed.  相似文献   

16.
17.
The title complex, [Mo(C5H5)(C6H4FO)(C4H11Si)(NO)], is formed by reacting CpMo(NO)(CH2SiMe3)2, where Cp is cyclo­penta­dienyl, with one equivalent of p‐FC6H4OH. The complex exhibits the expected piano‐stool molecular structure, with a linear nitro­syl ligand [Mo—N—O 168.2 (2)°] having Mo—N and N—O distances of 1.764 (2) and 1.207 (3) Å, respectively. The phenoxo Mo—O distance of 1.945 (2) Å is suggestive of some multiple‐bond character.  相似文献   

18.
The reactions oi tributyltin ethoxide, Bu3SnOEt, with N,N-dialkylalkanolamines, HORNR2 (where R = ? CH2 · CH2? , ? CH2 · CH2 · CH2? and ? CH2 · MeCH? ; R = ? CH3 and ? C2H5) give Bu3SnORNR2. In reactions of Bu3SnOEt with N-methylethanolamine, HOCH2 · CH2NHMe, and various alkanolamines, HO · R · NH2, (where R = ? CH2 · CH2? ? CH2 · CH2 · CH2? , ? CHMe · CH2? ? CH2 · Me2C? and ? CH2 · CH · CH2 · Me) both the hydroxy as well as the amino groups show reactivity to form products of the type: Bu3SnOCH2 · CH2NHMe, Bu3SnOCH2 · CH2NMeSnBu3, Bu3SnO · R · NH2, Bu3SnO · R · NHSnBu3, and Bu3SnO · R · N(SnBu3)2, respectively. The reaction between Bu3SnOEt and o-aminophenol yields only Bu3SnO · C6H4NH2.  相似文献   

19.
A structurally diverse range of lipophilic, cationic η6‐arene η5‐cyclopentadienyl (η5‐Cp*) full‐sandwich complexes of ruthenium(II) have been prepared and structurally characterized by Fourier‐transform IR and NMR spectroscopy, electrospray mass spectrometry, and elemental microanalyses. Computational experiments incorporating the Hartree–Fock theory and the second‐order Møller–Plesset perturbation theory predict each complex to possess a uniform δ+ electrostatic potential, with the cationic charge of the [RuCp*]+ moiety completely delocalizing throughout the molecular structure of each metallocene. In vitro cytotoxicity studies demonstrate these delocalized lipophilic cations to be potent growth inhibitors of eleven unique tumorigenic cell lines, while exhibiting significantly lower levels of toxicity towards both a normal human fibroblast and a mouse macrophage cell line. Single‐crystal X‐ray structural determinations are additionally reported for five complexes, [Ru(η6‐C6H5(CH2)2CH3)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C6H5CO2CH2CH3)(η5‐C5(CH3)5)]BF4, [Ru(η6‐C10H8)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C14H10)(η5‐C5(CH3)5)]BPh4, and [Ru(η6‐C16H10)(η5‐C5(CH3)5)]BPh4.  相似文献   

20.
A comparative study was carried out of the process of plasma chemical deposition of boron carbide from hydrogen plasma containing the mixtures of BF3 + CH4 and BCl3 + CH4 sustained by RF arc (13.56 MHz) discharge. It was shown that in the case of synthesis of B4C from a mixture of BF3 + CH4, carbon and complex coordination compound [X3B]?H+ (R3B·FH) are formed as the by-products of condensed products. In the case of synthesis of B4C from the BCl3 + CH4 mixture, the only condensed product is carbon. Mechanisms for the formation of boron carbide on the surface of heated electrodes are proposed. The main feature of these mechanisms is the preliminary deposition of a graphite layer from CH4 and then the precipitation of boron with the participation of the radicals BF2, BF and BCl. B4C samples were obtained and the impurity composition, morphology and structure of bulk boron carbide samples obtained using both of its halides were studied. It was found that in both cases a carbon phase is present in boron carbide samples. The main impurities entering the B4C, in the case of using a mixture of BF3 + CH4, is silicon, and in the case of a mixture of BCl3 + CH4, is tungsten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号