首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative cationic polymerizabilities of the geometrical isomers of various alkenyl alkyl ethers were studied both in copolymerizations with each other and in their respective copolymerizations with vinyl isobutyl ether as standard. Copolymerizations were carried out in methylene dichloride at ?78°C. with boron trifluoride etherate as catalyst. The cis isomers have been found to be more reactive than the corresponding trans isomers. A primary alkyl substituent on the β-cis position of vinyl ethyl ether enhances the reactivity. Yet the steric effect is noticeable when the substituents are bulky. Compounds substituted with cis-β-isobutyl and with β-dimethyl showed little tendency to homopolymerization. It was proved that the polymer ends derived from cis and from trans monomers are respectively different in character because of the restricted rotation of the end unit around the terminal carbon–carbon bond. The alternation tendency, remarkable in the copolymerization of cis monomers with vinyl ether, was explained in terms of the cis-opening mechanism.  相似文献   

2.
To elucidate the effect of the introduction of a methyl group in the β-position of a vinyl monomer, propenyl alkyl ethers were copolymerized with vinyl ethers having the same alkoxy group. Propenyl alkyl ethers with an unbranched alkoxy group (ethyl or n-butyl propenyl ether) were more reactive than the corresponding vinyl ethers. This behavior is quite different from that of β-methylstyrene derivatives. However, propenyl alkyl ethers with branched alkoxy groups at the α carbon atom (isopropyl or tert-butyl propenyl ether) were less reactive than the corresponding vinyl ethers. Also, cis- isomers were more reactive than the trans isomers, regardless of the kind of alkoxy group and the polarity of the solvent.  相似文献   

3.
The cationic polymerization of propenyl n-butyl ether (PBE) in methylene chloride with boron fluoride etherate at ?78°C. has been studied. The copolymerization of PBE with vinyl n-butyl ether (VBE) showed that both the isomers are more reactive than VBE, and their monomer reactivity ratios were found to be:  相似文献   

4.
The 17O chemical shifts have been measured for 51 α,β-unsaturated and aromatic ethers. A good linear relationship is found between the 17O chemical shifts in a series of dialkyl and the corresponding alkyl vinyl ethers. Hence, the extent of p,π-interaction, between the oxygen atom and the vinyl group in the latter series does not, apparently, depend upon branching at the α-carbon atom in the alkyl moiety of these ethers. The PhOBut ether, however, as compared to the other alkyl phenyl ethers, shows significantly weakened p,π-interaction, which is apparently related to the steric hindrance of this interaction. The effects of two unsaturated groups upon the 17O chemical shifts in the corresponding ethers are non-additive. This is undoubtedly a result of ‘rivalry’ between these groups for conjugation with the lone electron pairs on the ethereal oxygen. The 17O chemical shift ranges of substituted methyl and vinyl phenyl ethers are nearly equal (≈30 ppm). An analysis of the 17O shielding for cyclopropyl ethers shows no observable p,σ-conjugation in these compounds. Excellent correlation (r>0.99) between the values of 17O chemical shifts and the calculated (MO LCAO SCF, CNDO/2) π-electron charges on the corresponding oxygen atoms look promising for experimental estimations of π-electron densities on the ethereal oxygen.  相似文献   

5.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

6.
cis- and trans-Propenyl isobutyl ethers were copolymerized with each other and each with vinyl isobutyl ether separately under various conditions. In homogeneous polymerizations a cis-β-methyl substitution on vinyl isobutyl ether apparently enhanced the reactivity, whereas the trans substitution tended to reduce it slightly. In heterogeneous catalysis, on the other hand, a β-methyl group on the vinyl ether, whether cis or trans, greatly reduced the reactivity, probably because of the steric hindrance toward the adsorption of monomers on the catalyst surface. The relative reactivities of cis- and trans-propenyl isobutyl ethers ranged from 2 to 20, depending on the polymerization conditions. The polymer end formed from the cis monomer exhibited special steric effects. It was concluded that even in homogeneous media the rotation of the polymer end around the terminal carbon–carbon bond is restricted.  相似文献   

7.
Several v-triazoles were synthesized by 1,3-dipolar cycloaddition of certain α-azido ethers and α-azidothioethers to phenylacetylene. In most of the cases the reaction led to the formation of the two isomeric v-triazoles. Structural assignments for the products obtained were made on the basis of NMR data and chemical reactions. Characteristic differences between the NMR spectra of the isomers have been noted.  相似文献   

8.
Cationic copolymerizations of anethole were carried out under various conditions in order to confirm the relative reactivities of its geometric isomers. trans-Anethole was more reactive than cis-anethole in copolymerizations with p-methoxystyrene or styrene, but less reactive in the mutual copolymerization of cis- and trans-anethole; i.e., the trans isomer was more reactive to a growing chain end with little steric hindrance. Thus the intrinsic reactivity of an olefinic double bond to carbonium ion is greater for the trans isomer than for the cis isomer. This idea is supported by 13C NMR spectra, since the signal of the olefinic β-carbon of the trans isomer is at higher field than that of the cis isomer. The behavior of anethole was compared with the results observed in vinyl ethers, where the cis isomer was always more reactive irrrspective of the structure of the growing chain end. In addition, the dependence of monomer reactivity ratios on polymerization conditions is discussed.  相似文献   

9.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Cationic copolymerizations of cis- and trans-propenyl ethyl ethers (PEE) with isobutenyl ethyl ether (IBEE) were carried out in methylene chloride at ?78°C with the use of boron trifluoride etherate as catalyst. Monomer reactivity ratios were r1 = 24.0 ± 2.4 and r2 = 0.02 ± 0.02 for the cis-PEE (M1)–IBEE (M2) system and r1 = 19.1 ± 1.8 and r2 = 0.04 ± 0.02 for the trans-PEE (M1)–IBEE (M2) system, indicative of the reactivity order: cis-PEE > trans-PEE ? IBEE. In separate experiments, these β-methyl-substituted vinyl ethers were allowed to react with various acetals in the presence of boron trifluoride etherate. The relative reactivities of these ethers were generally found to decrease in the order: cis-β-monomethylvinyl > vinyl > trans-β-monomethylvinyl > β,β-dimethylvinyl. Comparisons of these results with previously published copolymerization data have permitted the conclusion that, in both the copolymerizations and acetal additions, the single β-methyl substitution on vinyl ethers exerts little steric effect against their additions toward any alkoxycarbonium ion, whereas the β,β-dimethyl substitution results in a large adverse steric effect toward both β-monomethyl- and β,β-dimethyl-substituted alkoxycarbonium ions.  相似文献   

11.
Rate constants for the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α,β-unsaturated aldehydes have been determined at 298 ± 2 K using a relative rate technique. Using rate constants for the reactions of NO3 radicals with ethene and propene of (1.1 ± 0.5) × 10?16 cm3 molecule?1 s?1 and (7.5 ± 1.6) × 10?15 cm3 molecule?1 s?1, respectively, the following rate constants (in units of 10?16 cm3 molecule?1 s?1) were obtained: acetylene, ≤0.23; propyne, 0.94 ± 0.44; vinyl chloride, 2.3 ± 1.1; 1,1-dichloroethene, 6.6 ± 3.1; cis-1,2-dichloroethene, 0.75 ± 0.35; trans-1,2-dichloroethene, 0.57 ± 0.27; trichloroethene, 1.5 ± 0.7; tetrachloroethene, <0.4; allyl chloride, 2.9 ± 1.3; acrolein, 5.9 ± 2.8; and crotonaldehyde, 41 ± 9. The atmospheric implications of these data are discussed.  相似文献   

12.
Photochemistry of Conjugated δ-Keto-enones and β,γ,δ,?-Unsaturated Ketones On 1π,π*-excitation the δ-keto-enones 5–8 are isomerized to compounds B ( 18 , 22 , 26 , 28 ) via 1,3-acyl shift and to compounds C ( 19 , 23 , 27 , 29 ) via 1,2-acyl shift, whereas the β,γ,δ,?-unsaturated ketone 9 gives the isomers 32 and 33 by 1,2-and 1,5-acyl shift, respectively. Furthermore, isomerization of 6 to 24 , dimerization of 8 to 30 and addition of methanol to 8 ( 8 → 31 ) is observed. Unlike 7 and 8 the acyclic ketones 5 , 6 and 9 undergo photodecarbonylation on 1π,π*-excitation ( 5 → 20 , 21 ; 6 → 20 , 25 ; (E)- 9 → 35–38 ). Evidence is given, that the conversion to B as well as the photodecarbonylation of 5,6 and 9 arise from an excited singulet state, but the conversion to C as well as the dimerization of 8 from the T1-state.  相似文献   

13.
Acetal additions to β-substituted vinyl ethers having a variety of substituents (alkenyl ethers) were stereochemically investigated as model reactions for their cationic polymerization. The reactions catalyzed by BF3O(C2H5)2 in CH2Cl2 at O°C gave 1:1 adducts, the steric structure of which was determined by means of 13C-NMR spectroscopy. trans-Alkenyl ethers always gave adducts with a single structure stereospecifically, indicating that the intermediate carbocation attacks a trans-alkenyl ether from a definite direction independent of the bulkiness of substituents. On the other hand, cis-alkenyl ethers formed adducts with two steric structures, and the direction of cation addition was found to depend on the bulkiness of the alkoxy group involved. The above trends were in agreement with the results for poly(alkenyl ether)s and allowed detailed discussion of the stereochemistry of the propagation processes in alkenyl ether polymerizations.  相似文献   

14.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

15.
35Cl nuclear quadrupole resonance spectra of cyclic α-chloro ethers of known configuration are presented. The resonance frequencies of chlorine atoms in equatorial positions are in every case some 2.5 MHz higher than those of corresponding chlorine atoms in axial positions. Similar results are obtained for open-chain trichloromethyl ethers and the effect is sufficiently well-defined to distinguish between configurational isomers and establish their conformation. These results may be rationalised in terms of a model in which the lone-pair electrons on the oxygen atom hyperconjugate with the electrons of the C? Cl bond.  相似文献   

16.
tert-Butyl α,β-dioxobutyrate (hydrate; 1d ) undergoes, at medium or high pH, the benzilic-acid rearrangement with exclusive 1,2-shift of the COO(t-Bu) group; the same is true for the corresponding isopropyl ester 1c and ethyl ester 1b at high pH, whereas at lower pH, the overall picture of these reactions is complicated by concurrent hydrolysis of the ester, followed by a 1,2-shift of the COO ? group. Consequently, the shift of these electron-attracting groups cannot be considered to be systematically disfavoured (compared, e.g., with alkyl-group shifts). Kinetic measurements of the rearrangement show for both esters (as well as for the analogous ethyl ester 1b , and also for ethyl 3-cyclopropyl-α,β-dioxopropionate ( 4 )) a characteristic rate profile: at relatively low pH, k is proportional to [HO?], approaching saturation with increasing [HO?] (interpreted as complete transformation of the substrate into the hydrate monoanion), which is followed at higher pH by another rate increase with k proportional to [HO?] (probably due to the reaction of the hydrate dianion). The similarity of k values for 1b-d shows that in the shift of COOR steric hindrance caused by R is negligible.  相似文献   

17.
A highly stereoselective synthesis of α‐ or β‐glycofuranosyl amides based on the traceless Staudinger ligation of glycofuranosyl azides of the galacto, ribo, and arabino series with 2‐diphenylphosphanyl‐phenyl esters has been developed. Both α‐ and β‐isomers can be obtained with excellent selectivity from a common, easily available precursor. The process does not depend on the anomeric configuration of the starting azide but appears to be controlled by the C2 configuration and by the protection/deprotection state of the substrates. A mechanistic interpretation of the results, supported by 31P NMR experiments, is offered and merged with our previous mechanistic analysis of pyranosyl azide ligation reactions.  相似文献   

18.
Kinetic investigations of the reactions of (prop‐2‐enyl)dicarbonyl(cyclopentadienyl)iron complexes 1 with benzhydrylium ions 3 , and of dicarbonyl(cyclopentadienyl)[(1,2‐η)propene]iron(II) tetrafluoroborate ( 9 ⋅BF4) with π‐nucleophiles have been performed to elucidate the magnitude of the β‐effect of the [(CO)2FeCp] group (Fp group). Introduction of the Fp group into the allylic position of propene and 2‐methylpropene increases the nucleophilicity of the π‐bonds by nine and six orders of magnitude, respectively, with the result that the allyl‐Fp complexes 1a (N=6.78) and 1b (N=8.45) are among the strongest neutral π‐nucleophiles. Replacement of one β‐H‐atom in the isopropyl cation by the Fp group reduces the electrophilicity by more than 20 orders of magnitude, so that 9 + ranks among the weakest cationic C‐electrophiles (E=−11.2).  相似文献   

19.
A new coupling reaction has been developed in which β‐bromostyrenes react with ethers and tertiary amines to introduce the styryl group in the α‐position. The transformation is mediated by Me2Zn/O2 with 10 % MnCl2 and is believed to proceed by a radical addition–elimination mechanism. The ether and the amine are employed as solvent and the coupling takes place through the most stable α radical for unsymmetrical substrates. The products are obtained in moderate to good yields as the pure E isomers. The coupling can be achieved with a range of smaller cyclic and acyclic ethers/amines as well as various substituted β‐bromostyrenes.  相似文献   

20.
Herein, the first example of chloropalladation‐initiated asymmetric intermolecular carboesterification of alkenes with alkynes by using chiral amine auxiliaries is reported. The use of (1S,2S)‐N1,N1‐dimethylcyclohexane‐1,2‐diamine auxiliaries is essential for providing α‐methylene‐γ‐lactones products in moderate to high yields and excellent enantioselectivities at room temperature. Moreover, the chiral amine auxiliaries can be readily removed by hydrolysis during the reaction process to keep the absolute configuration. This oxygen‐ and water‐promoted asymmetric reaction opens a new window to study asymmetric processes in halopalladation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号