首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
9,10-Dimethoxy-1,2,3,4,12,13-hexahydro-1-oxoquino[1,2-c]quinazolinium perchlorate, 1,2,3,4,13,24-hexahydro-1-oxo[1,3]dioxolo[4,5-g]quino[1,2-c]quinazolinium perchlorate, 6-methyl-2,3,9,10-tetramethoxyquino-[1,2-c]quinazolinium perchlorate and 2,3-dimethoxy-13-methyl[1,3]dioxolo[4′,5′:6,7]quino[1,2-c]quinazolinium perchlorate were synthesized as analogs of the potent antitumor benzo[c]phenanthridine alkaloids nitidine and fagaronine. The related 2,3,8,9-tetramethoxyindazolo[2,3-a]quinoline and 2,3-dimethoxy[1,3]dioxolo-[4,5-g]indazolo[2,3-a]quinoline were also synthesized. Further, the novel formation of 6,7-dimethoxy-2-(2-ethylamino-4,5-dimethoxyphenyl)quinoline via reductive alkylation with Raney nickel in refluxing ethanol is also reported.  相似文献   

2.
The conversion of 2-acylamino-3-amino-1,4-naphthoquinones (II) to the corresponding 2-substituted 1H-naphth[2,3-d]imidazole-4,9-diones (I) under both alkaline and acid catalyzed conditions has been effected and the results compared. Treatment of 3-(4′-chlorobutanonyl-amino)-3-amino-1,4-naphthoquinone (He) with aqueous ethanolic sodium hydroxide solution gives 1,2-butanonaphth[2,3-d]imidazole-4,9-dione (V); whereas, treatment of lie with refluxing formic acid gave 2-(4′-chlorobutyl)-1H-naphth[2,3-d]imidazole-4,9-dione. Treatment of 2-substi-tuted 1H-naphth[2,3-d]imidazole-4,5-diones in DMF with alkyl halides in the presence of potassium carbonate affords the expected 1,2-disubstituted naphth[2,3-d]imidazole-4,9-diones (VI). The spectral properties of I, II, V and VI as well as those of some 2-acylamino-3-chloro-1,4-naphthoquinones IV are discussed.  相似文献   

3.
2-Benzoyl- 5 and 2-acetylacenaphthenone 6 , prepared from the corresponding 1-acyl-2-(1-pyrrolidinyl)-acenaphthylenes 2 and 3 , reacted with arylhydrazines 8 under acidic conditions to give the corresponding 1-arylacenaphtho[1,2-d]pyrazoles 9 and 10 . Novel heteropentalene mesomeric betaines, 5,7-dehydro-5H,7H-benzo[b]acenaphtho[1,2-e]-1,3a,6a-triazapentalenes 13 and 14 were prepared by reductive cyclization of 1-(o-nitrophenyl)acenaphtho[1,2-d]pyrazoles 9d and 10d , respectively.  相似文献   

4.
The reaction of 3-(2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-ylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxaline 4 with o-chlorobenzenediazonium chloride gave 3-[α-(o-chlorophenylhydrazono)-2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-ylmethyl]-2-oxo-1,2-dihydroquinoxaline 6 , whose refluxing in phosphoryl chloride/pyridine afforded 1-(o-chlorophenyl)-3-(2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-yl)-1H-pyrazolo[3,4-b]quinoxaline 7. The reactions of 6 and 7 with nitrous acid resulted in sulfur extrusion to provide 1-(o-chlorophenyl)-3-(4-methyl-4H-1,2,4-triazol-5-yl)1H-pyrazolo[3,4-b]quinoxaline 8 and 3-[α-(o-chlorophenylhydrazono)-4-methyl-4H-1,2,4-triazol-5-ylraethyl]-2-oxo-1,2-dihydroquinoxaline 9 , respectively.  相似文献   

5.
The polar 1,4-cycloaddition of dichloroketene to N,N-disubstituted (E)-5-aminomethylene-1,5,6,7-tetrahydro-(1-methyl)(1-phenyl)-4H-indazol-4-ones V, prepared from 1,5,6,7-tetrahydro-(1-methyl)(1-phenyl)-4H-indazol-4-ones via the 5-hydroxymethylene derivatives, gave in good yield N,N-disubstituted 4-amino-3,3-dichloro-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-(3H)ones VI, which are derivatives of the new heterocyclic system pyrano[2,3-e]indazole. Dehydrochlorination of VI with DBN afforded N,N-disubstituted 4-amino-3-chloro-6,7-dihydro(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(5H]-ones VII generally in satisfactory yield. Full aromatization with DDQ of VII was tried only in the case of dimethylamino derivatives, giving a moderate yield of 3-chloro-4-dimethylamino(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(7H)-ones. Cycloaddition of sulfene to V occurred only in the case of aliphatic N-substitution to give in moderate yield 4-dialkylamino-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)-3H-1,2-oxathiino[6,5-e]indazole 2,2-dioxides, which are derivatives of the new heterocyclic system 1,2-oxathiino[6,5-e]indazole.  相似文献   

6.
Polyfunctional 3-chloro-3-(4-chlorocoumarin-3-yl)prop-2-enal ( 1 ) used as a precursor for heterocyclic synthesis. Dichloro-aldehyde 1 was allowed to react with variable nucleophilic reagents, and a diversity of heterocyclic systems linked coumarin moiety at position 3 was synthesized. The reaction of compound 1 with guanidine and cyanoguanidine produced 3-(pyrimidin-4-yl)-4-chlorocoumarins 2 and 3 . Treating compound 1 with 3-amino-1,2,4-triazole and 2-aminobenzimidazole yielded triazolo[4,3-a]pyrimidine 4 and pyrimido[1,2-a]benzimidazole 5 . The treatment of compound 1 with cyanoacetamide, N-benzyl-2-cyanoacetamide, and 1H-benzimidazolylacetonitrile gave 2(1H)-pyridones 6 , 7 and pyrido[1,2-a]benzimidazole 8 . The reaction of compound 1 with 5-amino-3-methyl-1H-pyrazole and 6-aminouracil afforded pyrazolo[3,4-b]pyridine 9 and pyrido[2,3-d]pyrimidine 10 , respectively. Compound 1 reacted with ethylenediamine, o-phenylenediamine , o-aminophenol, and o-aminothiophenol leading to 5-(imidazolylmethyl)chromeno[4,3-e] [1,4]diazepine ( 12 ), 3-(benzodiazepin/benzoxazepin-2-yl)-4-chlorocoumarins 13 , 14 , and 6-(benzothiazol-2-ylmethyl)chromeno[4,3-b][1,5]benzothiazepine 16 , respectively. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

7.
Two dihydroxybenzofuroquinolinones, 3,9-dihydroxy-5H-benzofuro[3,2-c]quinolin-6-one (V) and 3,8-dihydroxy-6H-benzofuro[2,3-b]quinolin-11-one (VI), were obtained by the demethyl-cyclization of 3-(2,4-dimethoxyphenyl)-4-hydroxy-7-methoxy-1H-quinolin-2-one (IV). By the methylation with diazomethane, V gave a dimethylated compound (VII), while VI gave a trimethylated compound (VIII).  相似文献   

8.
1-Alkyl-3-carboxyindole-2-acetic acid anhydrides (I) react with ethylenediamine and with o-phenylenediamine to give directly 10-alkylimidazo[3,2:1′,2′]pyrido[4,5-b]indol-5(1H)-ones (II) and 5,6-dihydro-5-alkyl-13H-indolo[2′,3′:4,5]pyrido[1,2-a]benzimidazol-13-one (V), respectively. However, anhydrides I react with o-aminophenol and with o-aminothiophenol to give carboxyindole-acetanilide derivatives IX, which can be cyclised to indolo[2′,3′:4,5]pyrido[2,1-b]benzoxazolone and indolo[2′,3′:4,5]pyrido[2,1-b]benzthiazolone (XI). Some derivatives of II and V were prepared to help in elucidating the structures.  相似文献   

9.
Reactions of haloketenes with 2-arylideneaminopyridines were examined. Reaction of dichloroketene with 2-benzylideneaminopyridines gave 2,2-dichloro-3-phenyl-3-(2-pyridylamino)propanoic acids and 3-chloro-2-phenylpyrido[1,2-a]pyrimidin-4(4H)-ones. Similar reaction of dichloroketene with 2-(2-furfurylideneamino)-pyridines gave 3-chloro-2-(2-furyl)pyrido[1,2-a]pyrimidin-4-(4H)-ones. Chloroketene and chlorophenylketene also reacted with 2-arylideneaminopyridines to give pyrido[1,2-a]pyrimidin-4(4H)-ones. Ring transformations of pyrido[1,2-a]pyrimidin-4-(4H)-ones were carried out to give 1,8-naphthyridin-4(1H)-ones and imidazo[1,2-a]-pyridines.  相似文献   

10.
s-Triazolo[4,3-b]pyridazine (I) reacted photochemieally with bieyélo[2.2.1] hepla-2,5-diene, 1,5-cyclooctadiene, 1,3-cyclooctadiene, methylene cyclohexane, diethyl cis-1,2,3,6-tetrahydro-phthalate and ethyl 2-cyclopentene-1-acetate to givt: the following products: the endo and exo isomers of 4a, 5, 8a, 9-tetrahydro-9-rnethylene-5,8-rnethano-8H-s-triuzolo[1, 5-a]indole (II) and the endo and exo-9-cyanometliyl products (III and IV) from bicyclo[2.2.1] hepta-2,5-diene; 4a,5,-9, 10, 10a, 11-huxahydro-11-methylene-6H-cycloocta[4,5]pyrrolo[1,2-b]-s-triazole (V) and the 11-cyanomethyl product VI from 1,5-cyclooctadiene: 4a,7,8,9,10,10a-hexahydro-11 -inethylene-11H-cycloocta[4,5]pyrrolo[1,2-b]-s-triazole(VII),4a, 5, 7, 8, 10a, 11-hexahydro-11-methylene-6H-cycloocta[4,5]pyrroIo[1,2-b]-s-triazole (VIII) and their respective 9-cyanomethyl products (X and 1X) from 1,3-cyclooctadiene; 6′, 7′ -dihydro-7′ -methylenespiro[cyclohexane-1, 5′-[5H] pyr-rolo[1,2-b]-s-triazole] (XI), 6′, 7′-dihydro-7′-meth) lene. spiro cyclohexane-1, 6′-[5H]pyrrolo[1,2-b]-s-triazole] (XII) and their respective 7 -eyanomethyl products (XIII and XIV) from melhylene cyclohexane; 6,7-dicarbethoxy-9-cyanomelhyl-4a, 5, 7, 8, 8a, 9-hexahydro-6H-s-triazolo[1,5-a]indole (XV) from diethyl cis-1, 2, 3, 6-tetrahydrophlhalate: and 5-earl)elhoxymethyl-8-eyanomethyl-4a, 5, 6, 7, 7a, 8-hexahydrocyclopenta[4,5]pyrrolo( 1, 2-b]-s-triazole (XVI) from ethyl 2, 2-cyclo-pentene-1-acetate. Many other alkenes, particularly the phenyl ethylenes, did not react with compound 1. In general, more than one product was isolated for each reaction except in the case of the two ester alkenes where a single eyanomethyl product was observed.  相似文献   

11.
s-Triazolo[4,3-b Jpyridazine (I) photochemically reacted with dihydropyran; 2,3-dihydro-p-dioxin; 2,5-dihydrofuran; 2,5-dimethoxy-2,5-dihydrofuran; and 1,3-dioxep-5-ene to give a new series of substituted pyrrolo[1,2-b]-.s-triazoles (II-IX). In most reactions, two or more products were formed. The following compounds have been prepared from I: 9-methylene-4a,5,6,7,8a,9-hexahydropyrano[2,3 :4,5]pyrrolo[1,2-b]-s-triazole (Ha), the corresponding 9-cyanomethyl product (III), and 9-methylene-4a,7,8,8a-tetrahydro-6H,9H-pyrano[3′,2′:4,5]pyrrolo[1,2-b]-s-triazole (IIb) from dihydropyran; 9-methylene-4a,6,7,8a-tetrahydro-9H-p-dioxino[2′,3′:4,5]-pyrrolo[1,2-6]-s-triazole (IV) from 2,3-dihydro-p-dioxin; 8-methylene-4a,5,7a,8-tetrahydro-7H-furo[3′,4′:4,5]pyrrolo[1,2-b]-s-triazole (V) and the corresponding 8-cyanomethyl product (VI) from 2,5-dihydrofuran; 8-cyanomethyl-5,7-dimethoxy-4a,5,7a,8-tetrahydro-7H-furo[3′,4′:4,5]-pyrrolo[1,2-6]-s-lriazole (VII) from 2,5-dimethoxy-2,5-dihydrofuran; and 10-methylene-4a,5,9a,10-tetrahydro-9H-[1,3]dioxepino[5′,6′:4,5]pyrrolo[1,2-b]-s-triazole (VIII) and the corresponding 10-cyanomethyl product (IX) from 1,3-dioxep-5-ene. The addition of several other compounds (1,2,3,6-tetrahydropyridine, 1-acetylimidazole, 3-sulfolene, 2,3-dihydro-p-dithiin, and vinylene carbonate) was attempted, but no reactions were observed.  相似文献   

12.
The chlorination of the α-hydrazonoester 4 with phosphoryl chloride/pyridine gave 3-[α-(o-chlorophenylhydrazono)methoxycarbonylmethyl]-2-chloroquinoxaline 5 , whose cyclization with 1,8-diazabicyclo[5,4,0]-7-undecene afforded 3-methoxycarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 6 . The reaction of 6 with hydrazine hydrate provided 3-hydrazinocarbonyl-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 7 , whose reactions with methyl and allyl isothiocyanates furnished 3-(2,3-dihydro-4-methyl-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chlorophenyl)-1H-pyrazolo[3,4-b]quinoxaline 2 and 3-(4-allyl-2,3-dihydro-3-thioxo-4H-1,2,4-triazol-5-yl)-1-(o-chloropheny)-1H-pyrazolo[3,4-b]quinoxaline 8 , respectively. Moreover, the reactions of 7 with triethyl orthoformate and orthoacetate gave 1-(o-chlorophenyl)-3-(1,3,4-oxadiazol-5-yl)-1H-pyrazolo-[3,4-b]quinoxaline 9a and 1(o-chlorophenyl)-3-(2-methyl-1,3,4-oxadiazol-5-yl)-1H-pyrazolo[3,4-b]quinoxaline 9b , respectively.  相似文献   

13.
Treatment of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid (X) with acetic anhydride under refluxing conditions afforded 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]-pyrimido[4,5-d]pyrimidin-5-one acetate (IX). The intermediate X was prepared from 4-chloro-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (V). The reaction of V with the sodium salt of 2-amino-3-hydroxypyridine at room temperature gave 4-(2-amino-3-pyridyloxy)-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (VI). Treatment of VI with a hot aqueous sodium hydroxide solution and subsequent acidification gave X. Involvement of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecaroboxylic acid ethyl ester (VIII) (Smiles rearrangement product) as an intermediate in the above alkaline hydrolysis reaction of VI to X was demonstrated by the isolation of VIII and its subsequent conversion into X under alkaline hydrolysis conditions. Acetylation of VIII with acetic anhydride in pyridine solution gave 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester acetate (XI), which afforded IX on fusion at 220°. This alternative synthesis of IX from XI supported the structural assignment of IX. Fusion of VI gave 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]pyrimido]4,5-d]pyrimidin-5-one (VII). The latter was also obtained when VIII was fused at 210°. Acetylation of VII with acetic anhydride afforded IX.  相似文献   

14.
The reaction of 4,7-diehlorofuro[2,3-d]pyridazine (1) with potassium cyanide in DMSO gave two products, (E)-3,6-diehloro-5-(2-cyanovinyl)-4-hydroxypyridazine (II) and 5,8-dichloro-2-oxo-2H-pyrano[2,3-d]pyridazine (III) as a result of ring opening or ring expansion. A new ring system, 2-oxo-2H-pyrano[2,3-c]pyridazines (IX, XII, XIII) was obtained from 5,8-dichloro-3-methyl-2-oxo-2H-pyrano[2,3-d]pyridazine (VI).  相似文献   

15.
The Compound 2-(N-Formyl-N-prop-2′-inyl)aminopyridine was cyclised in boiling formic acid to 3-methylimidazo[1,2-a]pyridine, with 3-methylene-2H-imidazo[1,2-a]pyridine as the intermediate. Under similar conditions the 1,3-diprop-2-inylpyrimido[4,5-b]quinoline-2,4-dione resulted from 1-methylimidazo[1,2-a]quinoline-4-carbonic acid-N-2-prop-2′-inylamide and from the 1-prop-2′-inylbenzo[b][1,8]naphthyridin-2-one the 1-methylbenzo[b]imidazo[1,2,3-ij]naphthyridine-4,7-dione as a new ring system, was obtained.  相似文献   

16.
Oxidation of 2-[2-(3-indolyl)ethyl]-1,2,3,4-tetrahydroisoquinoline (I) with mercuric acetate gave 5,6,8,9,14,14b-hexahydrobenz[a]indolo[3,2-h]quinolizine (IV) and 8,9-dihydro-14H-benz[a]indolo[3,2-h]quinolizin-7-ium iodide (VI), as well as starting material. The base (IV) was oxidized with iodine and potassium acetate to VI and on Palladium carbon - maleic acid dehydrogenation yielded 5,6-dihydro-14H-benz[a]indolo[3,2-h]-quinolizin-7-ium iodide (IX), and 14H-benz[a]indolo[3,2-h]quinolizin-7-ium iodide (X). Heating the iodide (VI) with Palladium-carbon brought about an irreversible rearrangement to VII and both these salts with base yielded the red anhydro base 8, 9-dihydrobenz[a]indolo[3,2-h]quinolizine (VIII). This base was also obtained from IV by oxidation in air. The corresponding 8, 9-dehydroanhydro base (XI), benz[a]indolo[3,2-h]quinolizine, was readily obtained from X and alkali. The quinolizinium salts (VI), (VII), and (IX), on catalytic, zinc dust and acetic acid, or sodium borohydride reduction, regenerated the base (IV). Selenium degradation of IV gave, among other products, 1-(2-ethylphenyl)-β-carboline. An analogous series of products was obtained with the 6, 7-dimethoxy derivative of I. Various other aspects of these and related transformations are described.  相似文献   

17.
6-Allyl(diallyl, prop-2-yn-1-yl)amino-1-R-pyrazolo[3,4-d]pyrimidin-4(5H)-ones reacted with iodine to give angularly fused 8-iodomethyl-7,8-dihydro-1-R-imidazo[1,2-a]pyrazolo[4,3-e]pyrimidin-4(6H)-ones which were treated with sodium acetate to obtain 8-methylidene-1-R-7,8-dihydroimidazo[1,2-a]pyrazolo-[4,3-e]pyrimidin-4(6H)-ones as a result of elimination of hydrogen iodide. 8-Methylidene-1-R-7,8-dihydroimidazo[1,2-a]pyrazolo[4,3-e]pyrimidin-4(6H)-ones were converted into 8-methyl-1-R-imidazo[1,2-a]pyrazolo-[4,3-e]pyrimidin-4(5H)-ones on heating to the melting point. 8-Methylidene-1-phenyl-7,8-dihydroimidazo-[1,2-a]pyrazolo[4,3-e]pyrimidin-4(6H)-one underwent isomerization into linearly fused 6-methyl-1-phenyl-1,8-dihydro-4H-imidazo[1,2-a]pyrazolo[3,4-d]pyrimidin-4-one on heating in sulfuric acid.  相似文献   

18.
The condensation of 4-amino-2,1,3-benzothiadiazole (IV) with diphenyliodonium-2-earboxylate gave N-(2,1,3-benzothiadiazoI-4-yl)anthranilic acid (V) (28%), which was cyclized with phosphorus oxychloride to 6-chloro[1,2,5]thiadiazolo[3,4-c]acridine (VI) (84%). Treatment of VI with 3-(dimethylamino)-1-propanethiol hydrochloride in phenol afforded 6-[ [3-(dimethylamino)-propyl]thio] [1,2,5]thiadiazolo[3,4-c]acridine (VII) (65%). The reaction of IV with a mixture of methyl and ethyl 2-oxocyclohexanecarboxylate gave the adduct, which was ring closed in Dowtherm to 7,9,10,1 1-tetrahydro[1,2,5] thiadiazolo[3,4-c]acridin-6(8H)one (VIII) (70%). Chlorination of VIII with phosphorus oxychloride gave 6-chloro-7,8,9,10-tetrahydro[1,2,5]thiadiazolo[3,4-c]acridine (IX) (84%), which was condensed with 3-(dimethylamino)-1-propanethiol hydrochloride in phenol yielding 6-[ [3-(dimethylamino)propyl]thio]-7,8,9,10-tetrahydrof 1,2,5]-thiadiazolo[3,4-c]acridine (X) (27%). 6-[ [3(1)imethylamino)propyl]thio]-8,9-dihydro-7H-cyclopenta[b] [1,2,5]thiadiazolo[3,4-h]quinoline (XIII) (25%) was prepared similarly from IV and a mixture of methyl and ethyl 2-oxocyclopentanecarboxylate via 7,8,9,10-tetrahydro-6H-cyclopenta[b][1,2,5]thiadiazolo[3,4-h]quinolin-6-one (XI) (85%) and 6-chloro-8,9-dihydro-7H-cyclopenta[b][1,2,5]thiadiazolof3,4-h]quinoline (XII) (56%). The effects of compounds VII-XIII as inhibitors of platelet aggregation are discussed.  相似文献   

19.
A general synthesis of 10-Oxo-10H-pyrido[1,2-a]thieno[3,4-d]pyrimidines and 10-Oxo-10H-pyrido[1,2-a]-thieno[3,2-d]pyrimidines is described. Methyl tetrahydro-4-oxo-3-thiophenecarboxylate ( 13 ) was condensed with 6-aminonicotinic acid ( 18 ) to give 3,10-dihydro-10-oxo-1H-pyrido[1,2-a]thieno[3,4-d]pyrimidine-7-carboxylic acid ( 19 ). Treatment of 19 successively with chlorotrimethylsilane, N-chlorosuccinimide and water gave 10-oxo-10H-pyrido[1,2-a]thieno[3,4-d]pyrimidine-7-carboxylic acid ( 17 ). Methyl tetrahydro-3-oxo-2-thiophenecarboxylate ( 21 ) was converted to 10-oxo-10H-pyrido[1,2-a]thieno[3,2-d]pyrimidine-7-carboxylic acid ( 25 ) by an analogous route.  相似文献   

20.
3-(1-Benzoyl)ethyl-1H-pyrido[2,3-b]pyrazin-2-one ( 7 ), 3-(1-ethoxycarbonyl)ethyl-1H-pyrido[2,3-b]-pyrazin-2-one ( 8 ), and 3-(1-benzoyl)ethyl-1H-quinoxalin-2-one ( 9 ) exist only in the imine form due to the steric effect of the methyl substituent. As regards the imine-enamine tautomerism, 3-(β-carbonylmethylene) derivatives of 1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one such as 12 and 15–18 gradually change from the enamine form to the imine form with elevated temperatures; however, 3-(carbonylmethylene) derivatives of 3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one such as 10, 19 and 20 show little temperature effect. 2-Phenacylidene-1,2-dihydro-4H-pyrido[3,4-b]pyrazin-3-one ( 21 ) and 3-phenacylidene-3,4-dihydro-1H-pyrido[3,4-b]pyrazin-2-one ( 22 ), which exist in the enamine form, show no temperature effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号