首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The authors consider m -th order nonlinear difference equations of the form D m p x n + i h j ( n , x s j ( n ) )=0, j =1,2,( E j ) where m S 1, n ] N 0 ={0,1,2,…}, D 0 p x n = x n , D i p x n = p n i j ( D i m 1 p x n ), i =1,2,…, m , j x n = x n +1 m x n , { p n 1 },…,{ p n m } are real sequences, p n i >0, and p n m L 1. In Eq. ( E 1 ) , p = a and p n i = a n i , and in Eq. ( E 2 ) , p = A and p n i = A n i , i =1,2,…, m . Here, { s j ( n )} are sequences of nonnegative integers with s j ( n ) M X as n M X , and h j : N 0 2 R M R is continuous with uh j ( n , u )>0 for u p 0. They prove a comparison result on the oscillation of solutions and the asymptotic behavior of nonoscillatory solutions of Eq. ( E j ) for j =1,2. Examples illustrating the results are also included.  相似文献   

2.

We investigate the global stability, the periodic character, and the boundedness nature of solutions of the difference equation x n +1 = f + n x n m (2 k +1) + i x n m 2 l A + x n m 2 l , n =0,1,… where k and l are non-negative integers, the parameters f , n , i , A are non-negative real numbers with f + n + i >0, and the initial conditions are non-negative real numbers. We show that the solutions exhibit a trichotomy character depending upon the parameters n , i and A .  相似文献   

3.

We investigate the asymptotic behavior of solutions of the system x ( n +1)=[ A + B ( n ) V ( n )+ R ( n )] x ( n ), n S n 0 , where A is an invertible m 2 m matrix with real eigenvalues, B ( n )= ~ j =1 r B j e i u j n , u j are real and u j p ~ (1+2 M ) for any M ] Z , B j are constant m 2 m matrices, the matrix V ( n ) satisfies V ( n ) M 0 as n M X , ~ n =0 X Á V ( n +1) m V ( n ) Á < X , ~ n =0 X Á V ( n ) Á 2 < X , and ~ n =0 X Á R ( n ) Á < X . If AV ( n )= V ( n ) A , then we show that the original system is asymptotically equivalent to a system x ( n +1)=[ A + B 0 V ( n )+ R 1 ( n )] x ( n ), where B 0 is a constant matrix and ~ n =0 X Á R 1 ( n ) Á < X . From this, it is possible to deduce the asymptotic behavior of solutions as n M X . We illustrate our method by investigating the asymptotic behavior of solutions of x 1 ( n +2) m 2(cos f 1 ) x 1 ( n +1)+ x 1 ( n )+ a sin n f n g x 2 ( n )=0 x 2 ( n +2) m 2(cos f 2 ) x 2 ( n +1)+ x 2 ( n )+ b sin n f n g x 1 ( n )=0 , where 0< f 1 , f 2 < ~ , 1/2< g h 1, f 1 p f 2 , and 0< f <2 ~ .  相似文献   

4.
This paper deals with the question of the existence of classical solutions for the equations $$\frac{{\partial ^{2} u}{\partial t^{2} }} + \sum_{\begin{subarray}{l} |\alpha| \leqslant m \\ | \beta | \leqslant m \end{subarray}} D^{\alpha} (A_{\alpha \beta } (x,t) D^{\beta} u) = f (t,x,u)$$ on [0,T] × G. G is a bounded or unbounded domain; the differential operator in the space variables is elliptic; the initial values of u are prescribed and Dαu (t,x) vanishes for (t,x) ∈ [0,T] × ?G, |α|≤ m?1. First we develop a method for solving regularly linear wave equations. In contrast to the usual compatibility conditions, our method requires less differentiability in t but imposes some boundary conditions on f(t). It allows some applications to nonlinear problems which will be treated in the second part of this paper and which e.g. enable us to solve ?2 u/?t2?A(t)u+u3=f.  相似文献   

5.
Existence of positive solutions for the nonlinear fractional differential equation D αu = f(x,u), 0 < α < 1 has been given (S. Zhang. J. Math. Anal. Appl. 252 (2000), 804–812) where D α denotes Riemann–Liouville fractional derivative. In the present work we extend this analysis for n-term non autonomous fractional differential equations. We investigate existence of positive solutions for the following initial value problem
with initial conditions where is the standard Riemann–Liouville fractional derivative. Further the conditions on a j ’s and f, under which the solution is (i) unique and (ii) unique and positive as well, are given  相似文献   

6.

In this paper, we shall study the asymptotic behavior of solutions of difference equations of the form x n +1 = x n p f ( x n m k 1 , x n m k 2 ,…, x n m k r ), n =0,1,…, where p is a positive constant and k 1 ,…, k r are (fixed) nonnegative integers. In particular, permanence and global attractivity will be discussed.  相似文献   

7.

We consider the functional difference system ( A ) j x i ( n )= f i ( n ; X ), 1 h i h k , where X =( x 1 ,…, x k ) and f 1 (·; X ),…, f k (·; X ) are real-valued functionals of X , which may depend quite arbitrarily on values of X ( l ) for multiple values of l ] Z . We give sufficient conditions for ( A ) to have solutions that approach specified constant vectors as n M X . Some of the results guarantee only that the solutions are defined for n sufficiently large, while others are global. The proof of the main theorem is based on the Schauder-Tychonoff theorem. Applications to specific quasi-linear systems are included.  相似文献   

8.
Let M be either the space of 2π-periodic functions Lp, where 1 ≤ p < ∞, or C; let ωr(f, h) be the continuity modulus of order r of the function f, and let
, where
, be the generalized Jackson-Vallée-Poussin integral. Denote
. The paper studies the quantity Km(f − Dn,r,l(f)). The general results obtained are applicable to other approximation methods. Bibliography: 11 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 350, 2007, pp. 52–69.  相似文献   

9.
A class of nonlinear second-order equations of divergent form is distinguished, whose solutions have properties recalling the properties of solutions of ordinary elliptic equations. In the linear case these are equations of the form $$\sum\nolimits_{j = 1}^k \lambda _j (x)A_j^2 u + \sum\nolimits_{j = 1}^k {\mu _j (x)A_j u + c(x)u + f(x) = 0,} $$ where the \(A_j = \sum\nolimits_{\alpha = 1}^n {\alpha _j^\alpha (x)\frac{\partial }{{\partial x^\alpha }}(1 \leqslant j \leqslant k)} \) are linearly independent first-order differential operators whose Lie algebra is of rank n, 2 ? k ? n, and theλj(x) ? 0 are functions which can become0 zero or increase in a definite way. Harnack's inequality is proved for nonnegative solutions of these equations.  相似文献   

10.
紧支撑正交插值的多小波和多尺度函数   总被引:10,自引:0,他引:10  
杨守志 《数学学报》2005,48(3):565-572
本文给出一类伸缩因子为α的紧支撑正交插值多尺度函数和多小波的构造方法.设{Vj}是尺度函数Φ(x)=[φ1(x),φ2(x),…,φa(x)]T生成的多分辨分析,Vj(?)L2(R)是{a-j/2φ(?)(ajx-k),k∈Z,(?)=1,2,…,a)线性扩张构成的子空间,其插值性是指φ1(x),φ2(x),…,φa(x)满足φj(k+(?)/a)=δk,0δj,e,j,(?)∈{1,2,…,a).当Φ(x)是正交插值的,则多分辨分析的分解或重构系数能用采样点表示而不需要用计算内积的方法产生.基于此,我们建立多小波采样定理,即如果一个连续信号f(x)∈VN,则f(x)=∑i=0a-1∑k∈Zf(k/aN+i/aN+1)φi+1(aNx-k),并给出对应多小波的显式构造公式.更进一步,证明了本文构造的多小波也有插值性.最后,还给出一个构造算例.  相似文献   

11.
We prove the well-posed solvability in the strong sense of the boundary value Problems
$$\begin{gathered} ( - 1)\frac{{_m d^{2m + 1} u}}{{dt^{2m + 1} }} + \sum\limits_{k = 0}^{m - 1} {\frac{{d^{k + 1} }}{{dt^{k + 1} }}} A_{2k + 1} (t)\frac{{d^k u}}{{dt^k }} + \sum\limits_{k = 1}^m {\frac{{d^k }}{{dt^k }}} A_{2k} (t)\frac{{d^k u}}{{dt^k }} + \lambda _m A_0 (t)u = f, \hfill \\ t \in ]0,t[,\lambda _m \geqslant 1, \hfill \\ {{d^i u} \mathord{\left/ {\vphantom {{d^i u} {dt^i }}} \right. \kern-\nulldelimiterspace} {dt^i }}|_{t = 0} = {{d^j u} \mathord{\left/ {\vphantom {{d^j u} {dt^j }}} \right. \kern-\nulldelimiterspace} {dt^j }}|_{t = T} = 0,i = 0,...,m,j = 0,...,m - 1,m = 0,1,..., \hfill \\ \end{gathered} $$
where the unbounded operators A s (t), s > 0, in a Hilbert space H have domains D(A s (t)) depending on t, are subordinate to the powers A 1?(s?1)/2m (t) of some self-adjoint operators A(t) ≥ 0 in H, are [(s+1)/2] times differentiable with respect to t, and satisfy some inequalities. In the space H, the maximally accretive operators A 0(t) and the symmetric operators A s (t), s > 0, are approximated by smooth maximally dissipative operators B(t) in such a way that
$$\begin{gathered} \mathop {lim}\limits_{\varepsilon \to 0} Re(A_0 (t)B_\varepsilon ^{ - 1} (t)(B_\varepsilon ^{ - 1} (t))^ * u,u)_H = Re(A_0 (t)u,u)_H \geqslant c(A(t)u,u)_H \hfill \\ \forall u \in D(A_0 (t)),c > 0, \hfill \\ \end{gathered} $$
, where the smoothing operators are defined by
$$B_\varepsilon ^{ - 1} (t) = (I - \varepsilon B(t))^{ - 1} ,(B_\varepsilon ^{ - 1} (t)) * = (I - \varepsilon B^ * (t))^{ - 1} ,\varepsilon > 0.$$
.
  相似文献   

12.
In the present work it is studied the initial value problem for an equation in the form
  相似文献   

13.
We consider the problem
where Ω is a bounded smooth domain in , 1  <  p< + ∞ if N = 2, if N ≥ 3 and ε is a parameter. We show that if the mean curvature of ∂Ω is not constant then, for ε small enough, such a problem has always a nodal solution u ε with one positive peak and one negative peak on the boundary. Moreover, and converge to and , respectively, as ε goes to zero. Here, H denotes the mean curvature of ∂Ω. Moreover, if Ω is a ball and , we prove that for ε small enough the problem has nodal solutions with two positive peaks on the boundary and arbitrarily many negative peaks on the boundary. The authors are supported by the M.I.U.R. National Project “Metodi variazionali e topologici nello studio di fenomeni non lineari”.  相似文献   

14.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

15.
For Banach space operators T satisfying the Tadmor-Ritt condition a band limited H calculus is established, where and a is at most of the order C(T)5. It follows that such a T allows a bounded Besov algebra B∞ 10 functional calculus, These estimates are sharp in a convenient sense. Relevant embedding theorems for B∞ 10 are derived. Received: 25 October 2004; revised: 31 January 2005  相似文献   

16.
In this paper we discuss tbe local solvability of the following nonhomogeneous left invariant differential operators on the nilpotent Lie group H_n⊗R^K: P(X, Y, T, Z) = Σ_{|α+β|+ζ+|y|≤m|α+β|+2l=a}a_{αβly}X^αY^βT^lZ^y where X_j, Y_j (j = 1, 2, …, n), T, Z_j(j = l, 2, …, K) are bases of left invariant vector fields on H_n⊗R^K and a_{αβly} are complex constants.  相似文献   

17.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

18.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

19.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

20.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号