首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon–bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.  相似文献   

2.
3.
The stable isotopes of water are extensively used as tracers in many fields of research. For this use, it is essential to know the isotope fractionation factors connected to various processes, the most important of which being phase changes. Many experimental studies have been performed on phase change fractionation over the last decades. Whereas liquid–vapour fractionation measurements are relatively straightforward, vapour–solid and liquid–solid fractionation measurements are more complicated, as maintaining equilibrium conditions when a solid is involved is difficult. In this work, we determine the ice–liquid isotope fractionation factors in an indirect way, by applying the Van’t Hoff equation. This equation describes the relationship of the fractionation factors with isotope-dependent temperature changes. We apply it to the recently experimentally determined isotope dependences of the triple point temperature of water [Faghihi V, Peruzzi A, Aerts-Bijma AT, et al. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance. Metrologia. 2015;52:819–826; Faghihi V, Kozicki M, Aerts-Bijma AT, et al. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances. Metrologia. 2015;52:827–834]. This results in new values for the 2H (deuterium) and 18O fractionation factors for the liquid–solid phase change of water, which agree well with existing, direct experimental data [Lehmann M, Siegenthaler U. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J Glaciol. 1991;37:23–26]. For 2H, the uncertainty is improved by a factor of 3, whereas for 18O the uncertainty is similar. Our final results are αS–L (2H/1H)?=?1.02093(13), and αS–L (18O/16O)?=?1.002909(25), where the latter is the weighted average of the previous experimental study and this work.  相似文献   

4.
Differential elastic scattering cross sections for 1·4–2·4 MeV protons from natural nitrogen and titanium were measured at laboratory scattering angle 160°. The present cross section data are tabulated for later use in backscattering analyses. Our results for nitrogen are in qualitative agreement with previous data taken at slightly different scattering angles. The cross sections of titanium agree with theoretical Rutherford values within experimental errors. Examples of recent analytical applications of proton backscattering are given.The authors wish to thank the members of NPI accelerator group for their assistance in the course of experiments.  相似文献   

5.
A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10–30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10–12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H? beams up to 2–3 mA are discussed.  相似文献   

6.
The hyperfine structure (hfs) and isotope shift (IS) in the isotopic chain of the radioactive element radon have been studied for the first time. The measurements were carried out by collinear fast-beam laser spectroscopy at the mass separator facility ISOLDE at CERN. The IS between 16 isotopes in the mass range 202A222 and the hfs of 7 odd-A isotopes were determined in the transitions 7s [3/2]2-7p [5/2]3 (745 nm) of Rn I. The nuclear spins and moments, as well as the observed inversion of the odd-even staggering for218–222Rn, can be associated with the effects of octupole instability around N=134.This work was supported by the Bundesministerium für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

7.
Nitriding of Fe–21.5 at. % Cr alloy leads to a “discontinuously coarsened”, chromium-nitride/ferrite lamellar precipitation morphology in the nitrided zone. The nitrogen-absorption isotherm for this alloy with this precipitation morphology was determined at 560°C. To assure a constant precipitation morphology the Fe–21.5 at. % Cr specimen was first homogeneously pre-nitrided (at 580°C in an ammonia/hydrogen gas mixture of nitriding potential 0.103 atm?1/2) and then de-nitrided (at 470°C in hydrogen gas atmosphere). The amount of nitrogen remaining in the de-nitrided specimen indicated that the composition of the nitride precipitates is CrN and not (Fe, Cr)N. The measured nitrogen-absorption isotherm revealed the presence of excess nitrogen in the nitrided specimen, which is a surprise in view of the coarse, lamellar precipitation morphology. The occurrence of this excess nitrogen could be ascribed to an unexpected, minor fraction of the total chromium content in the alloy present as coherent, tiny nitride platelets within the ferrite lamellae of the “discontinuously coarsened” lamellar precipitation morphology, as evidenced by transmission electron microscopy. A possible kinetic background for this unusual phenomenon was discussed.  相似文献   

8.
9.
刘建鹏  李冀光  邹宏新 《中国物理 B》2017,26(2):23104-023104
Accurate isotope shift factors of the 2s2p~(3,1)P_1~o–2s~2 ~1S_0 transitions in B II, obtained with the multi-configuration Dirac–Hartree–Fock and the relativistic configuration interaction methods, are reported. We found a linear correlation relation between the mass shift factors and the energies for the transitions concerned, considering all-order electron correlations. This relation is important for estimating the uncertainty in the calculation of isotope shift factors. These atomic data can be used to extract the nuclear mean-square charge radii of the boron isotopes with halo structures or to resolve the high precise spectroscopy of B II in astronomical observation.  相似文献   

10.
A novel ion detection method has been developed and studied in this paper for the first time to detect and observe tracks of nitrogen ions and their angular distribution by unaided eyes in the Amirkabir 4 kJ plasma focus device (PFD). The method is based on electrochemical etching (ECE) of nitrogen ion tracks in 1 mm thick large area polycarbonate (PC) detectors. The ECE method employed a specially designed and constructed large area ECE chamber by applying a 50 Hz–high voltage (HV) generator under optimized ECE conditions. The nitrogen ion tracks and angular distribution were efficiently (constructed for this study) amplified to a point observable by the unaided eyes. The beam profile and angular distribution of nitrogen ion tracks in the central axes of the beam and two- and three-dimensional iso-ion track density distributions showing micro-beam spots were determined. The distribution of ion track density along the central axes versus angular position shows double humps around a dip at the 0° angular positions. The method introduced in this paper proved to be quite efficient for ion beam profile and characteristic studies in PFDs with potential for ion detection studies and other relevant dosimetry applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号