首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of polymerization conditions such as aging time of the catalyst, polymerization temperature, polymerization time, monomer concentration, and catalyst concentration on the polymerization of isobutyl vinyl ether was intensively studied by using the VCI3·LiCl–Al(i-Bu)3 system at an Al(i-Bu)/VCl3·LiCl ratio of 6 at which the cationic polymerization by VCl3·LiCl is sufficiently depressed. About 10 min aging of the catalyst in the presence of monomer yields a fairly stable catalytie system. The optimum polymerization temperature is around 30°C. The conversion increased with increasing monomer concentration, whereas the stereospecificity of polymerization decreased. Unexpectedly, the conversion decreased as total catalyst concentration increased. This phenomenon is explained by considering the deactivation of catalytic sites by the excess of Al(i-Bu)3. A reasonable mechanism from kinetic considerations is that two molecules of Al(i-Bu)3 deactivate the catalytic site in an equilibrium reaction. This deactivation is understandable by considering that the coordination of two molecules of Al(i-Bu)3 will occupy all the coordination positions of vanadium, so that there is no room for coordination of monomer coming to the catalytic site.  相似文献   

2.
The complex [η3-methallyl-nickel-dad]PF6 is a new catalyst precursor for ethylene polymerization. The system is active in the presence of usual organoaluminium compounds like diethylaluminium chloride, at low Al/Ni ratios and under mild reaction conditions (temperatures between −10°C and 25°C, ethylene partial pressure from 1 to 15 atm). The polymers show extensive methyl branching, whose content is controlled by reaction parameters like temperature and ethylene pressure.  相似文献   

3.
2,5-Dimethyl-3,4-dihydro-2H-pyran-2-carboxyaldehyde (methacrolein dimer) gave a polymer consisting of only recurring bicyclic structure of 1,4-dimethyl-6,8-dioxa-bicyclo-[3,2,1] octane with the use of Lewis acid and protonic acid as catalyst at room temperature. On the other hand, the polymer obtained by using BF3·(C2H5)2O under ?78°C. was found to have the structures produced by the aldehyde group polymerization as well as the bicyclic ones. The polymer obtained at ?40°C. had a low decomposition temperature (164°C.) owing to the presence of polyacetal group, whereas the fully saturated bicyclic polymer had a considerably high one (346°C.). The main factors affecting the polymerization were polymerization temperature and catalyst. Lowering temperature increased the polymerization of the aldehyde group. Anionic catalysts and weak cationic catalyst such as Al(C2H5)3? H2O, which were active catalysts for acrolein dimer, did not initiate the polymerization of methacrolein dimer. The fact that the relative viscosity of the polymer increased with polymerization time shows the polymerization of this monomer is a successive reaction.  相似文献   

4.
High-temperature polymerization of ?-caprolactam by using the salts derived from MAlEt4 (where M is Li, Na, and K) and monomer as catalyst was carried out. Polymerization occurs at 140–170°C, a temperature at which alkali metal caprolactamate has almost no catalytic activity for initiation. m-Cresol-insoluble polymer was obtained at temperatures lower than 231°C. Formation of a m-cresol-insoluble polymer depends on the polymerization temperature and time, and was observed under conditions where Al(Lac)3 has no catalytic activity. All the polymers obtained by NaAl(Lac)4–n(NHBu)n (n = 1 or 2) at 202°C were soluble in m-cresol. These trends observed in the case of MAl(Lac)4 are considered to be due to initiation by Al(Lac)3, which is a component of the catalyst used.  相似文献   

5.
6.
This paper discusses the synthesis of biodiesel catalyzed by solid base of K2CO3/HT using Jatropha curcas oil as feedstock. Mg–Al hydrotalcite was prepared using co-precipitation methods, in which the molar ratio of Mg to Al was 3:1. After calcined at 600 °C for 3 h, the Mg–Al hydrotalcite and K2CO3 were grinded and mixed according to certain mass ratios, in which some water was added. The mixture was dried at 65 °C, and after that it was calcined at 600 °C for 3 h. Then, this Mg–Al hydrotalcite loaded with potassium carbonate was obtained and used as catalyst in the experiments. Analyses of XRD and SEM characterizations for catalyst showed the metal oxides formed in the process of calcination brought about excellent catalysis effect. In order to achieve the optimal technical reaction condition, five impact factors were also investigated in the experiments, which were mass ratio, molar ratio, reaction temperature, catalyst amount and reaction time. Under the best condition, the biodiesel yield could reach up to 96%.  相似文献   

7.
The following reactions, carried out in the absence of solvents, has been studied: α-TiCl3 + Al(CH3)3 at 20°C., β-TiCl3 + Al(CH3)3 at 65°C., α-TiCl3 + Al(CH3)2Cl at 20 and 65°C., and α-TiCl3 + Al(C2H5)3 between 30 and 65°C. It appears that a general reaction mechanism, such as discussed in the preceding paper of this series, applies to all these reactions between TiCl3 and aluminum alkyls. The differences in overall stoichiometry between some of these systems may be linked to differences in stability of the intermediate Ti? C bonds. In the case of α-TiCl3 + Al(CH3)2Cl, alkylation is probably accompanied by fixation of the AlCH3Cl2 on the nonvolatile product.  相似文献   

8.
A modified-polypropene-supported Ziegler catalyst was prepared using polypropene containing a small amount of poly(7-methyl-1,6-octadiene) as a starting polymer for bromination, lithiation, and reaction with TiCl4. The polymerization of ethene was carried out using the catalyst with Al(C2H5)3 in toluene at 60°C up to 100 h. The polymer yield increased linearly with polymerization time, which indicates that the active sites of the modified-polypropene-supported Ziegler catalyst are practically stable without deactivation even for 100 h and are able to propagate further polymerization of ethene.  相似文献   

9.
This article deals that the rare earth metal complexes along with Al(i'-Bu),can catalyze the polymerization of methyl-methacrylate (MMA) into high molecular weight poly(MMA) along with narrow molecular weight distributions (MWD).A typical example was mentioned in the case of {Cp(Cl) Sm-Schiff-base(THF)} which expresses maximum (conv.% = 55.46 and Mn=354×103) efficiency along with narrow MWD (Mw/Mn<2) at 60℃.The resulting polymer was partially syndiotactic (>60%).The effect of the catalyst,temperature,catalyst/MMA molar ratio,catalyst/Al( i-Bu)3 molar ratio on the polymerization of MMA at 60℃ were also investigated.  相似文献   

10.
The rate of polymerization with the VOCl3–AlEt2Br catalyst system at 30°C. in n-hexane reached a maximum at an Al/V molar ratio of 1.5. At this ratio, the rate of polymerization was first-order with respect to catalyst and second-order with respect to monomer concentrations. The apparent activation energy calculated was 6.4 kcal./mole. Diethylzine was found to act as a chain transfer agent. However, the molecular weights of polymers obtained were low. The possibility of bromide-containing catalyst sites acting in the termination reaction has been investigated. The average valence of vanadium is discussed in relation to molecular weights.  相似文献   

11.
Polymerization of propylene was conducted at 0 ∼ 150°C with the [ArN(CH2)3NAr]TiCl2 (Ar = 2,6-iPr2C6H3) complex using a mixture of trialkylaluminium (AIR3, R = methyl, ethyl and isobutyl) and Ph3CB(C6F5)4 as cocatalyst. When AlMe3 or AlEt3 was employed, atactic polypropylene (PP) was selectively produced, whereas the use of Al(iBu)3 gave a mixture of atactic and isotactic PP. The isotactic index (I.I.; weight fraction of isotactic polymer) depended strongly upon the polymerization temperature, and the highest I.I. was obtained at ca. 40°C. The 13C NMR analysis of the isotactic polymer suggests that the isotactic polymerization proceeds by an enantiomorphic-site mechanism. It was also demonstrated that the present catalyst shows a very high regiospecificity.  相似文献   

12.
Summery: A Ziegler-Natta catalyst of MgCl2 (ethoxide type)/TiCl4 has been synthesized. In order to obtain ultra high molecular weight polyethylene (UHMWPE) tri-isobutylaluminum which is less active to chain transfer was used as cocatalyst. Slurry polymerization was carried out for the polymerization of ethylene while, dilute solution viscometry was performed for the viscosity average molecular weight (Mv) measurement. The effect of [Al]/[Ti] molar ratio, temperature, monomer pressure and polymerization time on the Mv and productivity of the catalyst have been investigated. The results showed increasing [Al]/[Ti] ratio in the range of 78–117, decreased the Mv of the obtained polymer from 7.8 × 106 to 3.7 × 106 however, further increase of the ratio, resulted in decreased of by much slower rate up to [Al]/[Ti] = 588. The higher pressure in the range of 1–7 bars showed the higher the Mv of the polymer obtained, while increasing temperature in the range of 50 to 90 °C decreased the Mv from 9.3 × 106 to 3.7 × 106. The Mv rapidly increase with polymerization time in the first 15 minutes of the reaction, this increase was slowly up to the end of the reaction (120 min). Increasing [Al]/[Ti] ratio raised productivity of the catalyst in the range studied. Rising reaction temperature from 50 to 75 °C increased the productivity of the catalyst however, further increase in the temperature up to the 90 °C decreased activity of the catalyst. Monomer pressure in the range 1 to 7 bars yields higher productivity of the catalyst. Also by varying polymerization conditions synthesizing of UHMWPE with Mv in the range of 3 × 106 to 9 × 106 was feasible.  相似文献   

13.
Polymerization of n‐octylallene was successfully carried out using a conventional binary rare earth catalytic system composed of rare earth tris(2‐ethylhexylphosphonate) (Ln(P204)3) and tri‐isobutyl aluminum (Al(i‐Bu)3) for the first time. The effects of catalyst, solvent, reaction time and temperature on the polymerization of n‐octylallene were studied. The resulting poly(n‐octylallene) has weight‐average molecular weight of 11000, molecular weight distribution of 1.4 and 96% yield under the moderate reaction conditions: [Al]/[Y] =50 (molar ratio), [n‐octylallene]/[Y] =100 (molar ratio), polymerized at 80°C for 20 h in bulk. The poly(n‐octylallene) obtained consisted of 1,2‐ and 2,3‐polymerized units, and was characterized by FT‐IR, 1H NMR and GPC. Further investigation shows that the polymerization of n‐octylallene has some living polymerization characteristics, preparing the polymer with controlled molecular weight and narrower molecular weight distribution.  相似文献   

14.
Methyl methacrylate was polymerized at 40°C with the VCl4–AlEt3 catalyst system in n-hexane. The rate of polymerization was proportional to the catalyst and monomer concentration at Al/V ratio of 2, indicating a coordinate anionic mechanism of polymerization. NMR spectra were further used to confirm the mechanism of polymerization and stability of active sites responsible for isotacticity.  相似文献   

15.
The living/controlled radical polymerization of styrene was investigated with a new initiating system, DCDPS/FeCl3/PPh3, in which diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS) was a hexa‐substituted ethane thermal iniferter. The polymerization mechanism belonged to a reverse atom transfer radical polymerization (ATRP) process. The polymerization was controlled closely in bulk (at 100 °C) or in solution (at 110 °C) with a high molecular weight and quite narrow polydispersity (Mw/Mn = 1.18 ∼ 1.28). End‐group analysis results by 1H NMR spectroscopy showed that the polymer was ω‐functionalized by a chlorine atom, which also was confirmed by the result of a chain‐extension reaction in the presence of a FeCl2/PPh3 or CuCl/bipy (2,2′‐bipyridine) catalyst via a conventional ATRP process. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 101–107, 2000  相似文献   

16.
Single crystals of AlBr3 · NH3 and AlI3 · NH3 sufficient in size for X‐ray structure determinations were obtained by evaporation/ sublimation of the respective compound from its melt. The ammoniates were synthesized by the reaction of the pure halide with NH3 at ‐78°C and following homogenization by slowly heating the reaction mixture up to the melting points of the ammoniates (124°C and 126°C, respectively). The X‐ray structure determinations for both monoammoniates were successfully carried out for the heavy atom positions (no hydrogen atoms): AlBr3 · NH3: Pbca, Z = 16, a = 11.529 (5) Å, b = 12.188 (2) Å, c = 19.701 (4) Å AlI3 · NH3: Pbca, Z = 8, a = 13.536 (5) Å, b = 8.759 (2) Å, c = 14.348 (4) Å The structures contain tetrahedral molecules Al(NH3)X3 with X = Br, I. They are not isotypic. The main difference is given for the coordination of NH3 by X from neighbouring molecules. In Al(NH3)Br3 one of the two crystallographically independent NH3 ligands has 6Br and the other 7Br as neighbours whereas in Al(NH)3I3 only 5I surround the one kind of NH3.  相似文献   

17.
This communication deals with the coordination‐insertion ring‐opening polymerization of 1,4‐dioxan‐2‐one (DX) as initiated by aluminium triisopropoxide (Al(OiPr)3) either in bulk or in solution. First, polymerization of DX has been carried out in bulk at 100°C and compared to the ring‐opening polymerization promoted by tin(II)octoate. Block copolymers of ε‐caprolactone (CL) and DX have been then selectively obtained by first initiating CL polymerization with Al(OiPr)3 in toluene and then adding DX to the living PCL macroinitiator solution at room temperature. In spite of the inherent poor solubility of poly(1,4‐dioxan‐2‐one) in most organic solvents, DX polymerization has proven to proceed through a “living” mechanism. Interestingly enough, the semi‐crystalline P[CL‐b‐DX] block copolymers displayed two well separated melting endotherms at ca. 55 and 102°C for PCL and PDX sequences, respectively.  相似文献   

18.
The polymerization of acrylamide (I) initiated by a potassium bromate—thioglycollic acid (TGA) redox pair has been studied in aqueous media at 30°C in a nitrogen atmosphere. The reaction order related to the catalyst concentration (KBrO3) was 0.501, which indicated a bimolecular mechanism for the termination reaction in the range of 1.0?3.0 × 10?3 mole/liter. The polymerization rate varied linearly with monomer (I) concentration over the range of 1.0?5.0 × 10?2 mole/liter. A typical behavior is observed, however, by changing the thioglycollic acid concentration. The initial rate of polymerization (Ri), as well as the maximum conversion, increases by increasing the temperature to 30°C, but the initial rate and the maximum conversion falls as the temperature rises above 30°C. The overall energy of activation is 6.218 kcal in the temperature range of 20–40°C. Water-miscible organic solvents, namely, CH3OH and C2H5OH, depress the rate of polymerization.  相似文献   

19.
The polymerization of styrene with VOCl3 in combination with AlEt3 and with Al(i-Bu)3 in n-hexane at 40°C. has been investigated. The rate of polymerization was found to be second order with respect to monomer in both systems. With respect to catalyst the rate of polymerization was first order for VOCl3–AlEt3 and second order for VOCl3-Al(i-Bu)3 systems. The activation energies for VOCl3–AlEt3 and VOCl3–Al(i-Bu)3 systems were 7.37 and 11.25 kcal./mole, respectively. The molecular weight of polystyrene in the AlEt3 system was considerably higher than that in the Al(i-Bu)3 system. The valence of vanadium obtained by a potentiometric method showed that the catalyst sites in the AlEt3 system are different in nature from those in the Al(i-Bu)3 system. The effect of diethylzinc as a chain-transfer agent in the AlEt3 system was also studied.  相似文献   

20.
Methyl methacrylate was polymerized at 40°C with VOCl3–AlEt2Cl catalyst system in n-hexane. The rate of polymerization was proportional to catalyst and monomer concentration at Al/V ratio of 2 and overall activation energy of 9.25 kcal/mole support a coordinate anionic mechanism of polymerization. The catalytic activity and stereospecificity of this catalyst system is discussed in comparison with that of VOCl3–AlEt3 catalyst system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号