首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human body is exposed to ionising radiations both internally and externally by mainly high-energy cosmic ray particles incident on the earth's atmosphere and radioactive nuclides that originated in the earth's crust. The main objective of this study is to assess the health hazards due to environmental radiation sources in the city of Adapazari, one of the most important industrial cities of the country, Northwestern Turkey. For this purpose, natural radiation sources, external terrestrial radiations, cosmic radiations, and inhalation exposures have been investigated. The annual average external terrestrial radiation doses were determined as 0.08 and 0.35 mSv at outdoor and indoor atmospheres, respectively. The annual average cosmic radiation doses were found to be 0.08 and 0.05 mSv for directly ionising photon components and neutron components, respectively. The annual average inhalation exposure doses due to radon and thoron were obtained as 1.42 and 0.19 mSv, respectively, in the region. The annual average effective dose due to natural radiation sources was determined as a total of 2.35 mSv with the predetermined ingestion radiation dose. The lifetime cancer risk due to the background ionising radiations has been determined as 0.9×10(-2) for the residents of the Adapazari city, with the average lifespan of 70 years. The results of the effective doses due to background radiation sources in the region and the worldwide averages were discussed.  相似文献   

2.
Cosmic radiation is one of the most important sources of human exposure to natural radiation. Data regarding the level of cosmic radiation in different areas of Pakistan are lacking. The aim of the present study was therefore to estimate the annual outdoor effective doses from cosmic radiation in the Punjab province of Pakistan. The Punjab province is located between geodetic latitudes 28° and 34° N, and longitudes 69° and 75° E. The mean value of the outdoor annual effective dose was found to be 333 μ Sv, which generates a radiation dose of 0.33 mSv y?1 per caput. This is 87% of radiation dose received by the population in the region from terrestrial sources reported elsewhere. The results of this study will contribute to regional as well as world data regarding the exposure of the population to cosmic radiation.  相似文献   

3.
《Comptes Rendus Physique》2002,3(7-8):1035-1048
The average effective dose at the global level is, according to UNSCEAR, estimated to be 2.4 mSv from naturally occurring sources. This average value can be divided as follows: 1.3 mSv associated with radon, 0.39 mSv from cosmic radiation, 0.46 mSv from terrestrial radiation, and 0.23 mSv from internal radiation, radon excluded. These values can vary quite significantly depending on the place of habitation. Despite this large variation, no sound epidemiological study has yet shown the health effects on the most exposed populations, apart from a few studies concerning radon, but in which the predominant role of tobacco is difficult to determine. To cite this article: H. Métivier, C. R. Physique 3 (2002) 1035–1048.  相似文献   

4.
Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).  相似文献   

5.
Radon and thoron isotopes are responsible for approximately half of the average annual effective dose to humans. Although the half-life of thoron is short, it can potentially enter indoor air from adobe walls. Adobe was a traditional construction material in the Great Hungarian Plain. Its major raw materials are the alluvial sediments of the area. Here, seasonal radon and thoron activity concentrations were measured in 53 adobe dwellings in 7 settlements by pairs of etched track detectors. The results show that the annual average radon and thoron activity concentrations are elevated in these dwellings and that the proportions with values higher than 300 Bq m?3 are 14–17 and 29–32% for radon and thoron, respectively. The calculated radon inhalation dose is significantly higher than the world average value, exceeding 10 mSv y?1 in 7% of the dwellings of this study. Thoron also can be a significant contributor to the inhalation dose with about 30% in the total inhalation dose. The changes of weather conditions seem to be more relevant in the variation of measurement results than the differences in the local sedimentary geology. Still, the highest values were detected on clay. Through the year, radon follows the average temperature changes and is affected by the ventilation, whereas thoron rather seems to follow the amount of precipitation.  相似文献   

6.
ABSTRACT

As a pioneering study in Jordan, an extensive measurement for external gamma dose rate (GDR) was conducted. A portable gamma radiation detector was used to perform these measurements at 1?m above the soil surface. A geographical positioning system Garmin was used to record a total of 823 measured points. The GDRs’ measurement ranged from 35 to 470?nGy?h?1 giving a mean value of 90?nGy?h?1, which was found to be one and half times higher than the world average of 59?nGy?h?1. The lowest mean GDR 72?nGy?h?1 was found in the Albalqa governate, while the highest mean GDR 131?nGy?h?1 was found to be for the Alkarak governate. The mean annual effective dose was found to be 0.551?mSv, which is higher than the world average value of 0.48?mSv. This is a pivotal study evaluating the risks associated with GDR levels in Jordan that were the relative excess lifetime cancer risk, the mean collective effective dose, the mean weighted GDR and the mean lifetime dose that are 2.24?×?10?3, 5538manSv?y?1, 0.531?mSv and 39?mSv, respectively. The cosmic rays mean GDR was determined to be 20?nGy?h?1. This study focuses on constructing GDRs’ baseline data in Jordan, which will be used to determine the possible change in the natural radiation due to other human activities in the future. ArcGIS software was employed to generate an isodose map to characterise exposure rates caused by GDR in Jordan.  相似文献   

7.
ABSTRACT

Radon, thoron and associated progeny measurements have been carried out in 71 dwellings of Douala city, Cameroon. The radon–thoron discriminative detectors (RADUET) were used to estimate the radon and thoron concentration, while thoron progeny monitors measured equilibrium equivalent thoron concentration (EETC). Radon, thoron and thoron progeny concentrations vary from 31?±?1 to 436?±?12 Bq?m–3, 4?±?7 to 246?±?5 Bq?m–3, and 1.5?±?0.9 to 13.1?±?9.4 Bq?m–3. The mean value of the equilibrium factor for thoron is estimated at 0.11?±?0.16. The annual effective dose due to exposure to indoor radon and progeny ranges from 0.6 to 9?mSv?a–1 with an average value of 2.6?±?0.1?mSv?a–1. The effective dose due to the exposure to thoron and progeny vary from 0.3 to 2.9?mSv?a–1 with an average value of 1.0?±?0.4?mSv?a–1. The contribution of thoron and its progeny to the total inhalation dose ranges from 7 to 60?% with an average value of 26?%; thus their contributions should not be neglected in the inhalation dose assessment.  相似文献   

8.
The proposed method involves determination of ratio of absorbed doses in a mixed radiation field due to radiations from two different sources, provided that both radiations are of different LET, hence of a different quality factor. A detector used in the method is a tissue-equivalent recombination chamber. Shape of saturation curve of such a chamber depends on LET (on radiation quality). If the shapes of saturation curves are known for the radiations from two sources or for both components of a two-component radiation, then the actual ratio of absorbed dose components created simultaneously by these radiations in the mixed radiation field can be determined, performing relatively simple measurements of the ionization current at two different polarizing voltages applied to the chamber.  相似文献   

9.
The dose distributions at the region of eye lens and extremities of staff working in interventional cardiology were analyzed. The doses to physicians and nurses from three hospitals in Poland were measured with TL dosimeters (MCP-N) located on various places near eyebrows, on both fingers, wrists, knees and on the ankle. The procedures under investigation were coronary angiography (CA) and percutaneous coronary intervention (PCI), peacemaker and defibrillator implantations (PM/ICDs), cardiac resynchronization therapy with or without defibrillator implantations (CRT-D or CRT) and radiofrequency ablations (RFA). The study aimed at analyzing the distribution of radiation in selected anatomic regions, determining the typical locations of highest doses and estimating the dose ranges for selected types of procedures.The maximum registered doses per procedure to eye lens and ankle were 1.21 mSv and 1.46 mSv for CA PCI procedures, 0.02 mSv and 0.05 mSv for RFA and 0.13 mSv and 0.51 mSv for PM/ICDs, respectively. The maximum doses to fingers, wrists and knees were, accordingly, 2.11 mSv, 1.07 mSv and 0.77 mSv for CA PCI procedures, 0.38 mSv, 0.20 mSv and 0.04 mSv for RFA ones, 0.50 mSv, 0.25 mSv and 0.01 mSv for PM/ICDs procedures and 2.25 mSv, 1.12 mSv and 0.58 mSv for CRT and CRT-D ones. The factors which might influence the dose like utilized radiation, availability of additional protective equipment and position of the staff with respect to X-ray source were also analyzed.The annual doses for eye lens and extremities were estimated on the basis of individual annual workloads of the physicians participating in the study. The highest annual doses were revealed for physicians performing CA PCI procedures. Annual eye lens doses range up to 247 mSv indicating that the occupational limit for eye lens 150 mSv has been surpassed. In case of extremities the maximal estimated annual doses were 355 mSv, 136 mSv, 55 mSv and 328 mSv, for fingers, wrists, knees and for ankle, respectively. Moreover, in the light of ICRP new Statement on Tissue Reactions raising the possibility of lowering the annual limit for the lens of the eye the annual doses estimated in our paper indicate that for some procedures the monitoring of eye lens doses should be considered. On the other hand, it is important to note that most of high occupational doses can be easily avoided if radiation protection tools are used and, moreover, used properly.The present survey is a part of ORAMED project concerning the determination of doses to extremities (fingers, wrists and knees) and eye lens during interventional procedures and includes the detailed analyses of results of Polish partner. They are, however, presented in wider context. The study is additionally extended by the investigation of the dose distribution at the eyebrows and ankle level.  相似文献   

10.
AimNeutron-activated holmium-166 (166Ho) is an excellent radionuclide for internal radiation therapy (Eβmax = 1.84 MeV) with an appropriate half-life (26.8 h), which emits photons (81 keV, 6.2%) suitable to be detected by gamma cameras. Preparing and injecting radiopharmaceuticals containing beta/gamma emitting holmium-166 implies a risk of exceeding the upper limit for skin and hand radiation equivalent doses (500 mSv/an). This study was aimed to estimate the whole body and finger exposure for staff responsible for dose preparation, dose dispensing, and dose injection of holmium-166 therapy.MethodsTo measure the finger dose from external exposure, all staff members wore TLD dosimeters. Personal dose equivalents Hp(10) were measured using electronic personal dosimeters (EPD MK2, Thermo Fischer Scientific) placed on the left side of the chest. During our study, staff members administered more than 40 166Ho-based therapies for preclinical trial. Appropriate radiation safety procedures and shielding were applied at each stage.ResultsIn this study, the whole body doses were 2.80 ± 1.56 nSv MBq−1 for one 166Ho-therapy preparation/formulation, and 2.68 ± 1.70 nSv MBq−1 for one intravenous injection. Maximum finger doses were 2.9 ± 0.2 μSv MBq−1 and 2.5 ± 0.3 μSv MBq−1 for preparation and injection, respectively (activities injected: 72 ± 3 MBq).ConclusionExtrapolated annual doses from 300 166Ho radionuclide therapies were lower than the annual limit doses for skin and the whole body, 500 mSv and 20 mSv, respectively, reported in the European Directive EURATOM 96/29 when applying appropriate radiation protection standards. However, these doses have to be added to other diagnostic or therapeutic protocols, performed in preclinical facilities.  相似文献   

11.
222Rn (radon) is one of the most important sources of natural radiation to which people are exposed. It is an alpha-emitting noble gas and it can be found in various concentrations in soil, air and in different kinds of water. In this study, we present the results of radon concentration measurements in thermal waters taken from the sources in the region of Konya located in the central part of Turkey. The radon activity concentrations in 10 thermal water samples were measured by using the AlphaGUARD PQ 2000PRO radon gas analyser in spring and summer of the year 2012. We found that radon activity concentrations range from 0.60±0.11 to 70.34±3.55 kBq m?3 and from 0.67±0.03 to 36.53±4.68 kBq m?3 in spring and summer, respectively. We also calculated effective doses per treatment in the spas for the spring and summer seasons. It was found that the minimum and maximum effective doses per treatment are in the range of 0.09–10.13 nSv in spring and in the range of 0.1–5.26 nSv in summer.  相似文献   

12.
During interventional radiology (IR) and cardiology (IC) procedures, medical staff can receive high doses to their eye lenses. The Retrospective Evaluation of Lens Injuries and Dose study organized in Argentina in 2010 found incipient opacity in 50% of IC physicians and 41% of IC technicians/nurses. These results, added to the recommendations of the International Commission on Radiological Protection, which lowered their former occupational equivalent dose limit for the lens, led us to assess the eye lens dose, Hp(3), during interventional procedures.To this end, a new dosemeter was designed and calibrated at the National Atomic Energy Commission of Argentina to evaluate Hp(3). Personal dose equivalent (Hp(10)), and Hp(3) were assessed for 3 months in two IC and IR departments. An Alderson phantom was used to simulate monthly exposures of five occupational staff members.Hp(3) and Hp(10) were obtained monthly for 14 occupational staff members exposed to 121 IR and IC procedures. We concluded that the annual effective dose and Hp(3) were lower than 0.3 and 10 mSv, respectively and the average cumulative Hp(3) for working life was lower than 400 and 200 mSv for physicians and technicians/scrub nurse, respectively. An occupational annual dose constraint of 0.3 mSv was calculated.  相似文献   

13.
The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose–area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.  相似文献   

14.
The concentration of radon daughters in outdoor air was measured continuously from January 2006 to December 2006 near the Department of Physics, Bangalore University campus, Bangalore. The concentration was measured by collecting air samples at a height of 1 m above the ground level on a glass micro fibre filter paper with a known air flow rate. The results show that the radon progeny concentration exhibits distinct seasonal and diurnal variations that are predominantly caused by changes in the temperature gradient at the soil–atmosphere interface. The concentration was found to be high from 20.00 to 8.00 hrs, when the turbulence mixing was minimum and low during the rest of the time. In terms of the monthly concentration, January was found to be the highest with September/August being the lowest. The diurnal variations in the concentrations of radon progeny were found to exhibit positive correlation with the relative humidity and anti-correlation with the atmospheric temperature. From the measured concentration, an attempt was made to establish the annual effective dose to the general public of the region and was found to be 0.085 mSv/a. In addition, an attempt was also made for the first time to study the variation of inhalation dose with respect to the physical activity levels. Results show that in the light of both the effect of chemical pollutants and radiation dose due to inhalation of radon daughters, evening jogging is advisable.  相似文献   

15.
Concentration of 222Rn was determined in selected natural spring and tap water samples collected during spring and summer seasons from Kastamonu, Turkey. The aim of this work was to produce a map of the radon concentrations in water sources of the province and to determine any potential radiological risk for the local population. Radon measurements were performed by an AlphaGUARD radon gas analyser. The average radon concentrations were found to vary from 0.39±0.02 to 12.73±0.39 Bq l?1 for natural springs and from 0.36±0.04 to 9.29±0.45 Bq l?1 for tap water in spring, from 0.50±0.09 to 19.21±1.00 Bq l?1 for natural springs and from 0.31±0.03 to 13.14±0.38 Bq l?1 for tap water in summer. Furthermore, the results are compared with international recommendations and concentrations reported for other countries. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of the 222Rn present in these waters are expected to range from 0.93 to 32.54 μSv y?1 in summer and from 0.80 to 49.09 μSv y?1 in spring.  相似文献   

16.
To strengthen the radiation protection infrastructure in Bathinda, the uranium concentration in daily diet of the residents has been measured and its associated radiation risks were estimated for the adult population. Food samples were collected from major cancer prone areas of the district, from which daily diets were prepared. These diet samples were analyzed using fission track technique. The measured values of the uranium content were found to vary from 0.38 mBq/g in mustard seeds to 4.60 mBq/g in wheat. In case of milk the uranium content is found to vary from 28.57–213.36 mBq/ℓ with mean concentration of 61.35 mBq/ℓ. This leads to a daily dietary intake of 0.90 Bq/day. The measured value of 0.90 Bq d−1, contributes to 1.12 mSv to the cumulative effective dose to the population. This dose is much large than the International Commission for Radiological Protection (ICRP) annual effective dose limit of 1 mSv for the general public [1]. Therefore, it would pose significant health hazard.   相似文献   

17.
This study examined individual doses of Korean radiation workers divided into deep and surface doses based on the dose limits recommended by the International Commission on Radiological Protection (ICRP) or ICRP 103 (approved on March 2007) for 5 years from 2006 to 2010. In addition, the exposure doses were compared according to occupation, departments and scale of the medical institutions (primary, secondary and tertiary) as well as between dental hospitals and hospitals, which is currently an issue, using 116,220 sets of data on the quarterly and yearly exposure doses of 5811 Korean radiation workers measured over a 5-year period (January 2006 to December 2010). For the mean exposure doses according to occupation, both deep and surface doses were higher in radiological technicians than in the other occupations and there was a significant difference between radiological technicians and others (researchers and assistants) (p<0.05). The results showed that none of the Korean radiation workers were exposed to radiation doses exceeding the maximum tolerant dose or 20 mSv/year recommended by the ICRP. When the mean exposure doses were compared according to the departments, both deep and surface doses were significantly higher (p<0.05) in the department of nuclear medicine than in the other departments (the department of biomedical engineering and the management team). For the mean exposure doses according to the scale of the medical institutions, the doses were highest in tertiary medical institutions followed in order by secondary and primary medical institutions (p<0.05). A comparison of the mean exposure doses in dental hospitals and hospitals revealed both deep and surface doses to be higher in hospitals than in dental hospitals (p<0.05). This study is considered to be used as basic data to establish a system for exposure dose management of radiation workers and more accurate studies on the radiation exposure are necessary in the future.  相似文献   

18.
The effect of infrared radiation on the etching characteristics of CR-39 plastic track recorder has been studied. CR-39, which is commonly employed in cosmic rays studies is found to be affected by IR radiations. The changes in the bulk etch rate, in the track etch rate and in etching efficiency due to infrared radiation exposure of CR-39 are discussed on the basis of scission and cross linking during infrared exposure.  相似文献   

19.
High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1–60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5–50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.  相似文献   

20.
There has been considerable research on measurements and simulation of the cosmic radiation doses for aircrew. Most of this was made in the northern hemisphere and on routes between Europe, Asia and North America. The current work shows the results of measurements made onboard a military aircraft specifically in the South Atlantic Anomaly Region, comparing some active and passive instruments and the results from computational dose estimation with special concern about possible effects from the anomaly on the radiation doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号