首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wholistic isotopic studies provide a necessary foundation on which to build conceptual understanding of ecosystem development processes and provide the basis for further isotopic studies at a site or within an ecophysiological region. This study seeks to broadly characterise δ13C spatial variability and spatial patterns within soils and canopy tissues at five forest research sites in eastern Canada. We observe consistent and predictable patterns of leaf δ13C variation within trees and a consistent offset between woody and leafy tree tissues. Patterns are similar for both hardwoods and softwoods, but overall hardwoods had canopies that were more depleted in 13C. Soil carbon δ13C enrichment occurred with depth and appeared to vary according to site soil texture. Upper soil δ13C was intermediate between leaves and woody tissues, whereas deeper soil values suggested important contributions from more enriched tree tissues, such as persistent woody debris and possibly roots. The relationship between aboveground and belowground signatures suggests functional or developmental differences between study sites.  相似文献   

2.
Global solar radiation data for sites in Chile are analysed and presented in a form suitable for their use in engineering. A new model for monthly average data is developed to predict monthly average global radiation with acceptable accuracy by using actinographic data due to scarcing of pyranometer data. Use of the new quadratic model is proposed because of its relatively wider spectrum of values for Angstrom coefficients ao, al, and a2.  相似文献   

3.
Carbon isotopes of breath CO2 vary depending on diet and fuel substrate used. This study examined if exercise-induced δ13C-CO2 changes in substrate utilization were distinguishable from baseline δ13C-CO2 variations in a population with uncontrolled diet, and compared hair isotope values and food logs to develop an isotope model of diet. Study participants included nine women with diverse Body Mass Index (BMI), age, ancestry, exercise history, and diet. Breath samples were collected prior to and up to 12?h after a 5- or 10?K walk/run. Indirect calorimetry was measured with a smartphone-enabled mobile colorimetric device, and a field-deployable isotope analyzer measured breath δ13C-CO2 values. Diet was assessed by food logs and δ13C, δ15N of hair samples. Post-exercise δ13C-CO2 values increased by 0.54?±?1.09‰ (1 sd, n?=?9), implying enhanced carbohydrate burning, while early morning δ13C-CO2 values were lower than daily averages (p?=?0.0043), indicating lipid burning during overnight fasting. Although diurnal δ13C-CO2 variation (1.90?±?0.77‰) and participant baseline range (3.06‰) exceeded exercise-induced variation, temporal patterns distinguished exercise from dietary isotope effects. Hair δ13C and δ15N values were consistent with a new dietary isotope model. Notwithstanding the small number of participants, this study introduces a novel combination of techniques to directly monitor energy balance in free-living individuals.  相似文献   

4.
Measurement of soil-respired CO2 at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO2. A portable sampling device for the analysis of δ13C values in the field is described herein.

CO2 accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO2] versus δ13C) was used to derive δ13C values of soil-respired CO2. Calibration to the δ13C Vienna Peedee Belemnite scale was by analysis of cylinder CO2 and CO2 derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber.

Although there are inherent difficulties in obtaining absolute accuracy data for δ13C values in soil-respired CO2, the similarity of δ13C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ13C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ13C values for soil-respired CO2 related to the dominance of either C3 (tree, δ13C=?27.8 to?31.9 ‰) or C4 (tropical grass, δ13C=?9.8 to?13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ13C values of soil-respired CO2 were typically<0.4 ‰ for analysis of soils with high CO2 efflux (>7–9 μmol m?2 s?1).  相似文献   

5.
We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ13C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ13C versus time and the δ13C versus carbon emission curves.  相似文献   

6.
Abstract

Point defects produced by neutron, electron or γ-ray irradiation were studied by electrical measurements. The defect levels were analyzed by DLTS technique. Annealing of radiation induced defects at about 260°C was obtained in 20 min isochronal annealings. Annealed fraction of the 260°C stage was obtained to be 85% in arsenic-doped crystals and independent of the species of irradiating particle. The value in antimony-doped and oxygen-doped specimens were 25 and 70%, respectively. The activation energy was found to be 1.6 eV and the annealing kinetics were first order. A tentative model for the defect responsible at the 260°C stage is a vacancy complex.  相似文献   

7.
Novel tree ring parameters – δ13C and δ2H from methoxyl groups – have been developed to reconstruct palaeoclimate. Tests with δ13C and δ18O derived from whole wood and cellulose samples, however, indicated differences in the isotopic composition and climate signal, depending on the extracted wood component. We assess this signal dependency by analysing (i) δ13C and δ18O from whole wood and cellulose and (ii) δ13C and δ2H from methoxyl groups, using Pinus sylvestris L. growing near Altenkirchen (Germany). Results indicate significant correlations among the time series derived from whole wood, cellulose, and lignin methoxyl groups. Compared with the whole wood samples, δ13C from methoxyl groups showed a different and overall lower response to climate parameters. On the other hand, δ2H from methoxyl groups showed high correlations with temperature and was also correlated with ring width, indicating its potential as a temperature proxy. Isotope time series with the highest correlation with climatic parameter were: (i) whole wood and cellulose δ13C with growing season precipitation and summer temperature; (ii) methoxyl groups with spring precipitation; (iii) whole wood and cellulose δ18O correlates with annual evapotranspiration and water balance; and (iv) methoxyl group δ2H with spring temperatures. These findings reveal that multiple climate elements can be reconstructed from different wood components and that whole wood proxies perform comparably to cellulose time series.  相似文献   

8.
9.
Abstract

In estuarine ecosystems, large spatial and seasonal variations in δ13C values of primary producers can occur, and knowledge of these variations may be crucial when interpreting stable isotope data of higher trophic levels. Obtaining clean phytoplankton samples for isotope analysis is usually impossible in such systems, and analysis of total suspended matter is not a simple proxy for phytoplankton δ13C variations. Based on a few simple assumptions regarding the C and N content of the two end-members (terrestrial detritus and phytoplankton) and the δ13C of the terrestrial component, we here present a simple model to estimate the phytoplankton δ13C variations using an existing dataset on the δ13C and elemental (C:N) composition of suspended organic matter from an estuarine mangrove ecosystem in southeast India.

These variations are related to the monthly rainfall pattern during the sampling period. It is stressed that this method estimates approximate phytoplankton δ13C values, which should not be used in e.g., mixing models. However, we propose that in cases where sufficiently large datasets are available, the described procedure could provide a valuable method to semi-quantitatively estimate the seasonal or spatial variations of the phytoplankton δ13C signal.  相似文献   

10.
In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS). We used non-proteinogenic amino acids to show that the extraction–derivatization–analysis procedure provides a reliable method to measure δ13C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following:
  • production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives;

  • a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion;

  • different TMS-C δ13C for di-, tri- and tetra-TMS derivatives.

For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ13C values with a total average uncertainty of 1.3?‰. We conclude that trimethylsilyl derivatives are only suitable for determining the 13C incorporation in amino acids within experiments using 13C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.  相似文献   

11.
A thin shell can separate an interior region of Riemannian geometry from an exterior spherically symmetric Weyl space. We explore the possibility that a charged particle propagating in the gravitational field outside this thin shell could emit Cerenkov radiation. Some astrophysical scenarios in which such effect could arise are discussed.  相似文献   

12.
13.
High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ13C and δ15N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ13C values in aboveground (?30.8 to ?23.6?‰, average: ?26.6?±?0.4?‰) and belowground biomass (?30.0 to ?23.1?‰, average: ?26.3?±?0.4?‰) were similar. The δ13C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ15N values of aboveground (6.7–16.1?‰, average: 9.6?±?0.4?‰) were comparatively higher than belowground biomass (5.4–13.2?‰, average: 7.8?±?0.3?‰). The δ15N values were negatively correlated with soil available P. We conclude that the variation in δ13C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ13C as an indicator of stress in plants.  相似文献   

14.
15.
Abstract

Locust nymphs were raised from hatching to adult locusts on either seedling wheat (C3) or maize (C4), to determine whether relative enrichments/depletions of 15N and 13C within body tissues are influenced by diet. The maize contained less hexose sugars and protein per gram than wheat.

The isotopic spacing between the food and the whole insect was found to differ between the two diets. The lower quality maize diet showed an overall +5.1‰ enrichment in δ15N compared to + 2.8‰ for wheat, possibly due to increased fractionation due to protein recycling.

The maize diet resulted in increased depletion in lipid and trehalose and depletion in chitin relative to diet. The results for both δ15N and δ13C suggest that substrate recycling was occurring on the low quality maize diet. Therefore diet quality determines the enrichment/depletion in δ15N and δ13C within organisms.  相似文献   

16.
17.
Abstract

We report the first isotopic study of an animal host-parasite system. Parasitic, intestinal nematodes, Graphidium strigosum and Passalurus ambiguus, were 15N-enriched relative to their host, the European rabbit Oryctolagus cuniculus, while parasitic cestodes, Cittataenia denticulata and Mosgovoyia pectinata, were 15N-depleted, suggesting different trophic relationships. Host embryos were more similar in their δ13C and δ15N values to maternal muscle than were any of the parasites. Coprophagy, the direct recycling of food by the rabbit eating its own faeces, did not lead to isotopic differences between stomach contents and faeces, suggesting that the major point for isotopic discrimination in lagomorph nitrogen metabolism is in the animal rather than in the gut. We conclude that bulk δ13C and δ15N can reveal valuable new information about host-parasite relationships, and these could be explored further at the biochemical level using compound-specific isotopic analyses.  相似文献   

18.
The spatial patterns of plant and soil δ15N and associated processes in the N cycle were investigated at a forest–grassland boundary in northern Mongolia. Needles of Larix sibirica Ledeb. and soils collected from two study areas were analysed to calculate the differences in δ15N between needle and soil (Δδ15N). Δδ15N showed a clear variation, ranging from ?8?‰ in the forest to ?2?‰ in the grassland boundary, and corresponded to the accumulation of organic layer. In the forest, the separation of available N produced in the soil with 15N-depleted N uptake by larch and 15N-enriched N immobilization by microorganisms was proposed to cause large Δδ15N, whereas in the grassland boundary, small Δδ15N was explained by the transport of the most available N into larch. The divergence of available N between larch and microorganisms in the soil, and the accumulation of diverged N in the organic layer control the variation in Δδ15N.  相似文献   

19.
This article presents the results of measurements of the isotopic composition and concentration of atmospheric carbon dioxide, performed on air samples from Kraków (Southern Poland) in different seasons of the year. A simple isotope mass balance model has been applied to determine the contributions of different sources of CO2 to the urban atmosphere of Kraków city: the latitudinal/regional background, biospheric contributions and anthropogenic emissions. The calculations show that during the summer and early autumn the dominant contribution to local CO2 peaks is the biosphere, making up to 20% of atmospheric CO2 during the nocturnal temperature inversion in the lower troposphere. During early spring and winter, anthropogenic emissions are the main local source.  相似文献   

20.
Diet–tissue isotopic relationships established under controlled conditions are informative for determining the dietary sources and geographic provenance of organisms. We analysed δ13C, δ15N, and non-exchangeable δ2H values of captive African grey parrot Psittacus erithacus feathers grown on a fixed mixed-diet and borehole water. Diet–feather Δ13C and Δ15N discrimination values were +3.8?±?0.3?‰ and +6.3?±?0.7?‰ respectively; significantly greater than expected. Non-exchangeable δ2H feather values (?62.4?±?6.4?‰) were more negative than water (?26.1?±?2.5?‰) offered during feather growth. There was no positive relationship between the δ13C and δ15N values of the samples along each feather with the associated samples of food offered, or the feather non-exchangeable hydrogen isotope values with δ2H values of water, emphasising the complex processes involved in carbohydrate, protein, and income water routing to feather growth. Understanding the isotopic relationship between diet and feathers may provide greater clarity in the use of stable isotopes in feathers as a tool in determining origins of captive and wild-caught African grey parrots, a species that is widespread in aviculture and faces significant threats to wild populations. We suggest that these isotopic results, determined even in controlled laboratory conditions, be used with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号