首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hypercholesterolemia is a major health risk. Dietary cholesterol absorption is one important factor affecting levels of plasma and tissue cholesterol. Considerable effort has thus been devoted to develop reliable in vivo clinical methodologies to determine dietary cholesterol absorption in humans. The present paper summarises radiolabelled experiments and major advances in stable isotope technologies to determine cholesterol absorption. Initially, direct methods employing gastro-intestinal intubation were developed. Later, indirect methods using oral-faecal cholesterol balance permitted calculation of cholesterol mass absorption. Once the use of radiolabelled [3H, 14C]cholesterol balance was developed in healthy humans, it was finally possible to distinguish exogenous and endogenous cholesterol. Non-invasive and safer stable isotope (2H, 13C, 18O) labelled cholesterol tracers then replaced radioisotopes for use in infants and adults. Stable isotopes and radioisotopes showed identical cholesterol kinetics. The most promising contemporary stable isotope assessment of cholesterol absorption is a dual stable isotope dual tracer approach based on simultaneous administration of oral and intravenous differentially labelled cholesterol tracers, followed by plasma sampling for 3-4 d. Online GC/Combustion/IRMS and GC/Pyrolysis/IRMS allow minimal amounts of dual stable isotope cholesterol tracers to be detected. Using the dual stable isotope dual tracer approach, the percent cholesterol absorption in adult volunteers has been determined to be 50-70%.  相似文献   

2.
A newly developed isotope selective nondispersive infrared (NDIR) spectrometer for the measurement of 13CO2 and 12CO2 concentrations in breath samples was applied as a low cost and very simple to operate alternative to isotope ratio mass spectrometry (IRMS). We used this device for several biomedical applications ([13C]urea breath test, [13C]leucine metabolism, [13C]methacetin catabolism of rats) and found that the results agree very well with IRMS.  相似文献   

3.
In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS). We used non-proteinogenic amino acids to show that the extraction–derivatization–analysis procedure provides a reliable method to measure δ13C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following:
  • production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives;

  • a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion;

  • different TMS-C δ13C for di-, tri- and tetra-TMS derivatives.

For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ13C values with a total average uncertainty of 1.3?‰. We conclude that trimethylsilyl derivatives are only suitable for determining the 13C incorporation in amino acids within experiments using 13C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.  相似文献   

4.
δ13C values of gaseous acetaldehyde were measured by gas chromatograph–combustion–isotope ratio mass spectrometer (GC–C–IRMS) via sodium bisulfite (NaHSO3) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO3-coated Sep-Pak® silica gel cartridge, then derivatised with cysteamine, and then the δ13C value of the acetaldehyde–cysteamine derivative was measured by GC–C–IRMS. Using two acetaldehydes with different δ13C values, derivatisation experiments were carried out to cover concentrations between 0.009×10?3 and 1.96×10?3 mg·l?1) of atmospheric acetaldehyde, and then δ13C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ13C values of acetaldehyde, cysteamine and the acetaldehyde–cysteamine derivative. δ13C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ13C values were 0.04–0.31 ‰ for acetaldehyde–cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ13C values of acetaldehyde in ambient air at the two sites were distinct (?34.00 ‰ at an urban site versus?31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.  相似文献   

5.
Biomedical stable isotope studies involve administration of tracer and measurement of isotope enrichment in blood, urine, feces or breath. The aim of the studies is to gather quantitative information about a specific metabolic function. However, the measured isotope enrichment may be affected by other metabolic events than only this function. In this case, a correction is necessary. The best approach is to add a second tracer simultaneously which is known to be metabolised by all interfering metabolic events but not by the function of interest. This dual isotope approach also enables simultaneous measurement of two interrelated functions. A summary of selected applications involving dual isotope tracer studies is presented. The applications deal with energy expenditure (doubly labelled water technique), cholesterol absorption, starch and lactose digestion, fat digestion, bile acid metabolism and the combination of stable and radioactive carbon isotopes in breath testing.  相似文献   

6.
Abstract

A 15N tracer-experiment was carried out in a 140-year-old spruce stand (Picea abies (L.) Karst.) in the Fichtelgebirge (NE-Bavaria, Germany). Highly enriched (98 at%) [15N]ammonium and [15N]nitrate were applied as tracers by simulation of a deposition of 41.3 mol N ha?1 with 11 water m?2. To examine seasonal variations of uptake by spruce and understorey vegetation, different plots were labelled in spring, summer and autumn 1994.

One aim of the present study was to perfect a method of preparation of soil extracts for isotope ratio mass spectrometry (IRMS) measurements. Ammonium and nitrate from soil extracts were prepared for IRMS measurements by steam distillation and subsequent freeze drying. Additionally, tracer distribution and transformations in the soil nitrogen pools were examined. Ammonium, nitrate and total nitrogen were examined in the organic layer and the upper 10 cm of the mineral soil during 3 months after the first tracer application in spring 1994.

In July 1994, three months after tracer application, 40% of the [15N]ammonium label and 29% of the [15N]nitrate label, respectively, were recovered in the total N pool of the investigated soil horizons. In the organic layer the L/Of horizon retained most of the recovered tracers. Nitrification, immobilisation and mineralisation occurred even under the conditions of high soil acidity at the study site.  相似文献   

7.
Abstract

Customary 13CO2 breath tests—and also 15N urine tests—always start with an oral administration of a test substrate. The test person swallows a stable isotope labelled diagnostic agent. This technique has been used to study several pathophysiological changes in gastrointestinal organs. However, to study pathophysiological changes of the bronchial and lung epithelium, the inhalative administration of a stable isotope labelled agent appeared more suitable to us. [1-13C]Hexadecanol and [1-13C]glucose were chosen. Inhaled [1-13C]hexadecanol did not yield 13CO2 in the exhaled air, but [1-13C]glucose did. To study the practicability of the [1-13C]glucose method and the reproducibility of the results, 18 inhalation tests were performed with healthy subjects. In 6 self-tests, the optimum inhalative dose of [13C]glucose was determined to be 205 mg. Using the APS aerosol provocation system with the nebulizer ‘Medic Aid’ (Erich Jaeger Würzburg), a 25% aqueous solution was inhaled. Then, breath samples were collected at 15 min. intervals and analysed for 13CO2. 75–120min after the end of inhalation a well-reproducible maximum δ13C value of 6‰ over baseline (DOB) was detected for 12 healthy probands.

Speculating that the pulmonary resorption of the [13C]glucose is the rate-limiting step of elimination, decompensations in the epithelium ought to be reflected in changed [1-13C]glucose resorption rates and changed 13CO2 output.

Therefore, we speculate that the inhalation of suitable 13C-labelled substrates will pave the way for a new group of 13CO2 breath tests aiding investigations of specific pathophysiological changes in the pulmonary tract, such as inflammations of certain sections and decompensations of cell functions.  相似文献   

8.
Abstract

Intestinal calcium absorption from two different therapeutic preparations was compared intraindividually in 12 postmenopausal women. An amount of 800 mg of calcium as lactogluconate/carbonate or citrate was given in random order respectively. Each test dose was labelled with stable 44Ca. At the same time a tracer dose of 42Ca was injected intravenously. The amount of calcium absorbed was derived from the ratio of the stable tracers in blood serum and urine 24 hours after administration. Mean bioavailability of the calcium citrate preparation was higher (30%) than from the calcium lactogluconate/carbonate preparation (25%).  相似文献   

9.
Tracers can be used to monitor emissions of leachate from landfills in order to detect hydrological pathways and to evaluate environmental pollution. We investigated the stable carbon isotope ratio (δ13C–Σ CO 2) in dissolved inorganic carbon and tritium (3H) in water, in addition to the tracers of pollution commonly found in relatively high concentrations in leachate, such as chloride (Cl), organic matter (COD), nitrogen (total and NH4–N), iron (Fe), electrical conductivity (EC) and pH. The sampling was performed at seven landfills in the south-eastern part of Norway during a period of 5 years. The objective was to evaluate the potential for tracing leachate in the environment with emphasis on groundwater pollution. By measuring the δ13C–Σ CO 2 in leachates, groundwaters and surface waters, the influence of leachate can be identified. The value of δ13C–Σ CO 2 varied from?5.5 to 25.9 ‰ in leachate, from?25.4 to 14.7 ‰ in groundwater and from?19.7 to?13.1 ‰ in creeks. A comparison of the carbon isotope ratio with COD, EC and the concentrations of total and NH 4–N, Cl and Fe showed that δ13C–Σ CO 2 is a good tracer for leachate due to higher sensitivity compared to other parameters. The mean concentrations of all the studied parameters were higher in the leachate samples; however, only the carbon isotope ratio showed significant differences between all the groups with strong and middle pollution and samples with low pollution, showing that it can be used as a convenient tracer for leachate in groundwater and surface water. The carbon isotope ratio showed strong correlation between nitrogen, EC and bicarbonate, but not with pH. Tritium was only sporadically found in measureable concentrations and is not considered as a suitable tracer at the sampled locations.  相似文献   

10.
Abstract

Measurements in protein turnover and in metabolism of amino acids and their degradation products by means of stable isotope labelled substrates have been increasingly applied in clinical research over the last years. In spite of numerous studies dealing with this topic, quite a few important insufficiently clarified methodical aspects remain. This refers, for instance, to the choice of suitable tracer substances, the difficulties in the determination of the excretion plateau and the validation of the oxidation rates as measured with individual-labelled amino acids with regard to the whole body protein synthesis. Such problems may become of decisive importance in special subjects, such as preterm infants and critically-ill patients.

Investigations into these issues conducted by our group have revealed that the protein turnover in the very small preterm infant is by no means as intensive as previously claimed. The utilisation of urea nitrogen for the whole body protein synthesis of the infant may assume substantial proportions under the conditions of marginal protein intake and of catchup-growth. Studies conducted by means of 15N-labelled bifidobacteria have pointed at the intensive substrate exchange existing between microflora and host.

Pediatric research has to be non-invasive. Consequently, methods based on arterio-venous differences in tracer concentrations and on muscle biopsies do not have very high priority in pediatric research. A search for references published in the last five years has shown, that 15N-glycine is still the most frequently used tracer substance. There is a tendency towards a further increase of cell culture experiments run with stable isotope labelled amino acids.

Clinical research groups increasingly turn their attention to stable isotopes and mass spectrometry. This impressively demonstrates the continuing importance of tracerkinetic methods in all branches of medicine.  相似文献   

11.
Abstract

This paper was presented in poster form at the 17th International Congress of Nutrition, August 27-31, Vienna. Austria (Annals of Nutrition & Metabolism 2001; 45(Suppl.1):349). Some of the data were also presented in poster form at the British Society of Gastroenterology Meeting, March 18-21, Glasgow, UK (Gut 2001; 48(Suppl.1):A91).

The 13C-mixed triacylglycerol (MTG) breath test is used to measure intraluminal fat digestion. In normal digestion. 20–40% of the ingested 13C label is recovered in breath CO2. We aimed to identify the proportions of ingested label excreted in stool, as well as breath following ingestion of 13C-MTG by children with impaired exocrine pancreatic function and healthy controls. 13C enrichment of breath samples was measured by continuous flow isotope ratio mass spectrometry (IRMS) and cumulative percent dose recovered (cPDR) in 10 h was calculated. Total 13C of a faecal fat extract from each stool was measured by elemental analyser-IRMS, and 13C enrichment and concentration of the TBDMS derivative of octanoic acid was measured by GC/MS after hydrolysis of the fat extract. Stool 5-day cPDR was calculated. Mean breath cPDR was 35%. Mean cPDR in stool by combustion-IRMS and GC/ MS, respectively, was 0.8% and 1.0%. Therefore, the remaining 64% of the 13C label must remain in the body and variability in breath cPDR is due to postabsorptive rather than predigestive factors.  相似文献   

12.
In order to achieve better mutual understanding, a uniform and unambiguous language concerning certain terms, symbols, units, and nomenclature in stable isotope – especially in 15N tracer technique has been recommended. In particular, some definitions of fundamental terms, some nomenclature rules for stable isotopically labelled compounds and some symbols and units in the formula language of isotope stoichiometry are given. Recent fundamental recommendations of the IUPAC have been accepted as a basis, to which, if necessary, specialities of stable isotope chemistry, especially 15N application are added or adapted.  相似文献   

13.
Abstract

Breath tests using 13C-labelled substrates require the measurement of 13CO2/12CO2 ratio in breath gas samples. Next to isotope ratio mass spectrometry (IRMS), which is very sensitive but also complex and expensive, alternatively isotope selective nondispersive infrared spectrometry (NDIRS) can be used to determine the 13CO2/12CO2 ratio in expired breath. In this study we compared NDIRS- with IRMS-results to investigate whether the less expensive and very simply to operate NDIRS works as reliable as IRMS. For this purpose we applicated 1-13C-Phenylalanine to patients with advanced liver cirrhosis and healthy volunteers and took duplicated breath samples for IRMS and NDIRS at selected time points. Our data show a good correlation between these two methods for a small number of samples as required for simple breath tests. Longer series, where repeated measurements are required on the NDIRS instrument lead to a decreasing correlation. This indicates the superiority of IRMS concerning 13CO2-kinetics over longer time periods.  相似文献   

14.
This paper compiles all the data from our tracer diffusivity studies in single crystalline 2/1-mullite. As tracers we used the rare stable isotopes 18O and 30Si and the artificial pseudo-stable isotope 26Al. Secondary-ion mass spectrometry was applied to analyze the depth distribution of the tracer isotopes after the diffusion annealing. An essential result of our tracer diffusivity studies was the very low diffusivity of 30Si compared to the diffusivities of 26Al and 18O, which are almost equal. Based on this observation, we propose a reaction model for the diffusion-controlled formation of mullite in the solid state, which assumes that the growth kinetics of a mullite layer is mainly controlled by the diffusion of aluminium ions and oxygen ions.  相似文献   

15.
Abstract A (15)N tracer-experiment was carried out in a 140-year-old spruce stand (Picea abies (L.) Karst.) in the Fichtelgebirge (NE-Bavaria, Germany). Highly enriched (98 at%) [(15)N]ammonium and [(15)N]nitrate were applied as tracers by simulation of a deposition of 41.3 mol N ha(-1) with 11 water m(-2). To examine seasonal variations of uptake by spruce and understorey vegetation, different plots were labelled in spring, summer and autumn 1994. One aim of the present study was to perfect a method of preparation of soil extracts for isotope ratio mass spectrometry (IRMS) measurements. Ammonium and nitrate from soil extracts were prepared for IRMS measurements by steam distillation and subsequent freeze drying. Additionally, tracer distribution and transformations in the soil nitrogen pools were examined. Ammonium, nitrate and total nitrogen were examined in the organic layer and the upper 10 cm of the mineral soil during 3 months after the first tracer application in spring 1994. In July 1994, three months after tracer application, 40% of the [(15)N]ammonium label and 29% of the [(15)N]nitrate label, respectively, were recovered in the total N pool of the investigated soil horizons. In the organic layer the L/Of horizon retained most of the recovered tracers. Nitrification, immobilisation and mineralisation occurred even under the conditions of high soil acidity at the study site.  相似文献   

16.
The aim of this study was to identify sources of carbon turnover using stable isotope mass balances. For this purpose, two pre-reservoirs in the Harz Mountains (Germany) were investigated for their dissolved and particulate carbon contents (dissolved inorganic carbon (DIC), dissolved organic carbon, particulate organic carbon) together with their stable carbon isotope ratios. DIC concentration depth profiles from March 2012 had an average of 0.33 mmol L–1. Increases in DIC concentrations later on in the year often corresponded with decreases in its carbon isotope composition (δ13CDIC) with the most negative value of –18.4?‰ in September. This led to a carbon isotope mass balance with carbon isotope inputs of ?28.5?‰ from DOC and ?23.4, ?31.8 and ?30.7?‰ from algae, terrestrial and sedimentary matter, respectively. Best matches between calculated and measured DIC gains were achieved when using the isotope composition of algae. This shows that this type of organic material is most likely responsible for carbon additions to the DIC pool when its concentrations and δ13CDIC values correlate negatively. The presented isotope mass balance is transferable to other surface water and groundwater systems for quantification of organic matter turnover.  相似文献   

17.

For many ecological applications of stable carbon isotope techniques, it is necessary to separate the lipid and lipid-free fractions. The effect of different lipid extraction methods on the isotope signature of the remaining lipid-free matter as well as the lipid fraction was tested. A hot extraction form of the Soxhlet method using petrol-ether was compared with two liquid-liquid extraction methods for lipid determination described by Bligh and Dyer and Smedes. Solid samples of fish and different natural food items were subjected to extraction and the carbon isotope ratios in lipid and lipid-free matter determined by IRMS. All methods were suitable for lipid extraction from all samples analysed here and did not cause biologically relevant differences (>1) in carbon isotopic ratios, except the Bligh and Dyer extraction method using chloroform which caused systematic errors for δ 13C when applied to diatoms.  相似文献   

18.
We present a nondispersive infrared spectrometer (NDIRS) for the measurement of the 13CO2/12CO2-ratio in breath samples. A commercial NDIR spectrometer for CO2 concentration measurements in industrial process control was modified using two separate optical channels for the 13CO2 and 12CO2 detection. Cross interference due to overlapping absorption lines of both isotopic gases was successfully eliminated. The sensitivity of this device is ± 0.4‰ of the 13CO2/12CO2-ratio in a range of 2.5 to 5% of total CO2. This is sufficient for biomedical applications. Our spectrometer is small in size, cheap and simple to operate and thus a true alternative to isotope ratio mass spectrometers (IRMS). Several biomedical applications with breath samples were demonstrated and were compared in very good agreement with IRMS.  相似文献   

19.
Abstract

Isotopic enrichment of branched-chain L-amino acids (BCAA) and branched-chain 2-oxo acids (BCOA) in standard preparations and in human plasma samples withdrawn after oral loads with 1-13C labelled BCAA were measured on a conventional GC-MS system and an on-line GC-C-IRMS employing O-TMS quinoxalinol derivatives. It was concluded that the recently introduced GC-C-IRMS, owing to its high sensitivity, is the adequate analytical tool when tracer doses of stable isotope labelled compounds of low enrichment are to be used in biomedical in vivo studies.  相似文献   

20.
One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow–isotope ratio mass spectrometry (CF–IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in 18O and 2H. The waters present an overall enrichment in heavy isotopes during the warm seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号