首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Current Applied Physics》2010,10(4):1132-1136
We synthesized a new photo-curable organic/inorganic hybrid material, cyclotetrasiloxane (CTS) derivative containing cyclohexene-1,2-epoxide functional groups (CTS-EPOXY), and its characteristics are compared with a prototypical organic gate insulator of poly(4-vinylphenol) (PVP) in the organic thin film transistors (OTFTs) using pentacene as an active p-type organic semiconductor. Compared with PVP, CTS-EPOXY shows better insulating characteristics and surface smoothness. A metal/insulator/metal (MIM) device with the 300-nm-thick CTS-EPOXY film shows more than two orders of magnitude lower current (less than 40 nA/cm2 over the voltage range up to 60 V) compared with PVP. In addition, the pentacene TFT with CTS-EPOXY as a gate dielectric layer shows slightly higher field-effect mobility of μFET = 0.20 cm2/V s compared to that with PVP.  相似文献   

2.
The electronic structures and magnetic behaviors of graphene with 5d series transition metal atom substitutions are investigated by performing first-principles calculations. All the impurities are tightly bonded to single vacancy in a graphene sheet. The substitutions of La and Ta lead to Fermi level shifting to valence and conduction band, respectively. Both the two substitutions result in metallic properties. Moreover, the Hf, Os and Pt-substituted systems exhibit semiconductor properties, while the Re and Ir-substituted ones exhibit robust half-metallic properties. Interestingly, W-substituted system shows dilute magnetic semiconductor property. On the other hand, the substitution of Ta, W, Re and Ir induce 0.86 μB, 2 μB, 1 μB and 0.99 μB magnetic moment, respectively. Our studies demonstrate that the 5d series transition metal substituted graphene have potential applications in nanoelectronics, spintronics and magnetic storage devices.  相似文献   

3.
TiO2 thin films were prepared by sol-gel method. The structural investigations performed by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) showed the shape structure at T = 600 °C. The optical constants of the deposited film were obtained from the analysis of the experimentally recorded transmittance spectral data in the wavelength of 200–3000 nm range. The values of some important parameters of the studied films are determined, such as refractive index n and thickness d. In this work, using the transmission spectra, we have calculated the dielectric constant (ε) for four layered TiO2 films; a simple relation is suggested to estimate the third-order optical nonlinear susceptibility χ(3). It has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimations of the corresponding band gap Eg, χ(3) and ε are 2.57 eV, 0.021 · 10−10 esu and 5.20, respectively.  相似文献   

4.
Metal–oxide–semiconductor structures (MOS) with the embedded Co nanoparticles (NPs) were efficiently fabricated by utilizing an external laser irradiation technique for the application of nonvolatile memory. Images of high resolution transmission electron microscopy measurements exhibited that the Co NPs of 5 nm in diameter were clearly embedded in SiO2 gate oxide. Capacitance–voltage measurements certainly exhibited flat-band voltage shift of 2.2 V from 2 V to −8 V in sweeping range. The retention characteristics of MOS capacitors with the embedded Co NPs were also studied as a function of tunnel oxide thickness to confirm the suitability of nonvolatile memory devices with metal NPs. The experimental results reveal that our unique laser process will give possible promise for experimental efficient formation or insertion of metal NPs inside the gate oxide.  相似文献   

5.
TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5 g/L, RB69 initial concentration of 20 mg/L and ultrasonic power of 300 W. Furthermore, the effect of OH, h+ and O2 scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.  相似文献   

6.
《Physics letters. A》2006,359(5):523-527
We have investigated the magnetism and the electronic structure of V-doped rutile TiO2 using the first-principles full potential linearized augmented plane-wave (FP-LAPW) method. Total energy calculations reveal that V-doped rutile TiO2 has a stable ferromagnetic ground state. Meanwhile, the electronic structure analysis indicates that V-doped rutile TiO2 is a half-metal within the local density approximation (LDA) while a semiconductor within the LDA + U (Hubbard coefficient). The calculated magnetic moment in V-doped rutile TiO2 mainly arises from the V atom with a little contribution from the nearest-neighboring O atoms due to the hybridization between the V 3d states and the nearest-neighboring O 2p states.  相似文献   

7.
The effects of TiOx diffusion barrier layer thickness on the microstructure and pyroelectric characteristics of PZT thick films were studied in this paper. The TiOx layer was prepared by thermal oxidation of Ti thin film in air and the PZT thick films were fabricated by electrophoresis deposition method (EPD). To demonstrate the barrier effect of TiOx layer, the electrode/substrate interface and Si content in PZT thick films were characterized by scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The TiOx barrier thickness shows significant influence on the bottom electrode and the pyroelectric performance of the PZT thick films. The average pyroelectric coefficient of PZT films deposited on 400 nm TiOx layer was about 8.94 × 10−9 C/(cm2 K), which was improved by 70% than those without diffusion barrier layer. The results showed in this study indicate that TiOx barrier layer has great potential in fabrication of PZT pyroelectric device.  相似文献   

8.
Microstructure and dielectric properties of Li2CO3 doped 0.7(Ba,Sr)TiO3–0.3MgO ceramics for the low temperature sintering and microwave applications will be presented. In these days, low temperature sintering process has been widely spread out for the integrated electronic modules for the communication systems such as front-end modules, antenna modules, and switching modules. We have added Li2CO3 and MgO to (Ba,Sr)TiO3 material to reduce the sintering temperature and improve dielectric properties such as loss tangent, and frequency dispersion.In this paper, we have discussed the crystalline properties, dielectric properties, and the microstructures of Li2CO3 doped 0.7(Ba,Sr)TiO3–0.3MgO ceramics. No pyro phase was observed in the X-ray diffraction method. Very weak frequency dispersion (<0.7%) of dielectric permittivity was observed from the 1 kHz to 1 MHz range. We found that the grain size of BST is around 2 μm, while the grain size of Li2CO3 dope 0.7BST–0.3MgO is around 4 μm from the SEM analysis.  相似文献   

9.
A novel PVA/CuI nanocomposite polymer electrolyte layer synthesized via the reduction of CuCl2 by NaI in an aqueous PVA solution. The as-prepared films were characterized by X-ray diffraction, scanning electron microscope, as well as impedance spectroscopy. The obtained results indicated the formation of hexagonal CuI nano particles of ≈55 nm sizes embedded in the PVA matrix. In addition, the study of dielectric parameters and conductivity of PVA/CuI nanocomposite in wide range of temperature and frequency are given and discussed. The frequency dependence of ac-conductivity suggests power law with an exponent 0.026 < s < 0.73 which predicts hopping of charge carriers. The bulk conductivity showed activation with temperature, significant values of activation energy are deduced and discussed. An average value of the energy gap width, 2.05 eV obtained using optical absorption in UV–visible spectra for PVA/CuI nanocomposite polymer electrolyte.  相似文献   

10.
Films of an organic–inorganic nanocomposite material formed by a polymeric matrix (ethylene–vinyl alcohol copolymer—EVOH) and nanometric TiO2 particles (ca. 10 nm) have been obtained with photo-catalytic properties in the elimination of pathogens. Optical spectroscopy experiments have been performed in order to characterize the films and evaluate their properties as a function of TiO2 doping in the range between 0.25 and 13 wt%. Anatase TiO2 nanoparticles seem to be well-dispersed up to 2% but aggregation for higher doping originates the two different regimes observed in the acoustic modes as well as in the optical absorption in the visible spectral range.  相似文献   

11.
The effect of indium-tin oxide (ITO) surface treatment on hole injection of devices with molybdenum oxide (MoO3) as a buffer layer on ITO was studied. The Ohmic contact is formed at the metal/organic interface due to high work function of MoO3. Hence, the current is due to space charge limited when ITO is positively biased. The hole mobility of N, N′-bis-(1-napthyl)-N, N′-diphenyl-1, 1′biphenyl-4, 4′-diamine (NPB) at various thicknesses (100–400 nm) has been estimated by using space-charge-limited current measurements. The hole mobility of NPB, 1.09×10−5 cm2/V s at 100 nm is smaller than the value of 1.52×10−4 cm2/V s at 400 nm at 0.8 MV/cm, which is caused by the interfacial trap states restricted by the surface interaction. The mobility is hardly changed with NPB thickness for the effect of interfacial trap states on mobility which can be negligible when the thickness is more than 300 nm.  相似文献   

12.
In this work, hybrid nanocomposites based on anatase titania:polypyrrole (TiO2:PPy) were directly obtained from a simple, one-step, ultrasonic (UT)-assisted synthesis. The properties of these crystalline nanocomposites were compared with those of others fabricated using cold (Cold)-assisted synthesis without any UT assistance, which required a hydrothermal treatment (HT) to yield crystalline anatase titania in the nanocomposite (TiO2:PPy) at low temperature (130 °C) and in a short time (3 h). The SEM results demonstrated that the UT-assisted synthesis is a feasible method to obtain anatase TiO2:PPy nanocomposites with controlled morphology using low energy. The Fourier transform infrared (FT-IR) bands of the crystalline nanocomposites exhibited a shift with respect to neat components, which was attributed to the strong interaction between the secondary amine groups (N–H) of PPy and the oxygen from TiO2. The acceptable absorption in the visible region (λmax = 670 nm) indicates that these nanocomposites are good candidates for harvesting energy in solar cells. Devices based on these nanocomposites were built to evaluate their electrical properties. An increase in the photocurrent was observed for the devices prepared with the nanocomposites from the UT-assisted synthesis.  相似文献   

13.
Electrospraying and electrospinning processes were employed for the production of nanocomposite material of polymer nanofibers blended with nanoparticles. The diameter of polymer nanofibers made of PVC, PSU or nylon was smaller than 500 nm. Metal oxide nanoparticles of TiO2, MgO, and Al2O3 of the size 20–100 nm suspended in methanol were deposited on the polymer nanofibers. Three configurations of electrospray/electrospun nozzles used for the nanocomposite production were tested: 1. simultaneous electrospraying during the electrospinning process, 2. electrospraying onto the same rotating drum after the electrospinning is completed, and 3. electrospraying onto the electrospun mat removed from the drum and placed onto a heated table.  相似文献   

14.
We fabricated multiple stacked self-organized InGaAs quantum dots (QDs) on GaAs (3 1 1)B substrate by atomic hydrogen-assisted molecular beam epitaxy (H-MBE) to realize an ordered three-dimensional QD array. High quality stacked QDs with good size uniformity were achieved by using strain-compensation growth technique, in which each In0.35Ga0.65As QD layer was embedded by GaNAs strain-compensation layer (SCL). In order to investigate the effect of spacer layer thickness on vertical alignment of InGaAs/GaNAs QDs, the thickness of GaNAs SCL was varied from 40 to 20 nm. We observed that QDs were vertically aligned in [3 1 1] direction when viewed along [0 1 −1], while the alignment was inclined when viewed along [−2 3 3] for all samples with different SCL thickness. This is due to their asymmetric shape along [−2 3 3] with two different dominant facets thereby the local strain field around QD extends further outward from the lower-angle facet. Furthermore, the inclination angle of vertical alignment QDs became monotonously smaller from 22° to 2° with decreasing SCL thickness from 40 to 20 nm. These results suggest that the strain field extends asymmetrically resulting in vertically tilted alignment of QDs for samples with thick SCLs, while the propagated local strain field is strong enough to generate the nucleation site of QD formation just above lower QD in the sample with thinner SCLs.  相似文献   

15.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

16.
Photocatalytic degradation of methylene blue (MB) in water was examined using Er3+-doped TiO2 (Er–TiO2) nanorods prepared by a sol–gel derived electrospinning, calcination, and subsequent mechanical grinding. Different concentrations of Er dopant in the range of 0–1.0 mol% were synthesized to evaluate the effect of Er content on the photocatalytic activity of TiO2. Among Er3+–TiO2 catalysts, the 0.7 mol% Er3+–TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant (k) increased from 1.0 × 10?3 min?1 to 5.1 × 10?3 min?1 with the increase of Er3+ doping from 0 to 0.7 mol%, but decreased down to 2.1 × 10?3 min?1 when Er3+ content was 1.0 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with Er3+–TiO2 catalyst than with pure TiO2. The higher activity might be attributed to the transition of 4f electrons of Er3+ and red shifts of the optical absorption edge of TiO2 by erbium ion doping.  相似文献   

17.
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3 s of HIFU irradiation with 20, 32, 55 and 73 W cm−2 intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3 s, 73 W cm−2) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU + TiO2 in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU + TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU + TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future.  相似文献   

18.
Yttrium doped strontium titanate with A-site deficiency ((Y0.08Sr0.92)1 ? xTiO3 ? δ) was synthesized by conventional solid state reaction. The deficiency limit of A-site in (Y0.08Sr0.92)1 ? xTiO3 ? δ is below 6 mol% in Ar/H2 (5%) at 1500 °C. The sinterability of (Y0.08Sr0.92)1 ? xTiO3 ? δ samples decreases slightly with increasing A-site deficiency level (x). The ionic conductivity of (Y0.08Sr0.92)1 ? xTiO3 ? δ samples increases while the electronic conductivity decreases with increasing A-site deficient amount. The defect chemistry analysis indicates that the introduction of A-site deficiency results in not only the increase of oxygen vacancy concentration but also the decrease of Ti3+-ion concentration. The latter plays the main role in the electrical conduction. (Y0.08Sr0.92)1 ? xTiO3 ? δ shows good thermal-cyclic performance in electrical conductivity and has an excellent chemical compatibility with YSZ electrolyte below 1500 °C.  相似文献   

19.
In order to reduce the density mismatch between TiO2 and the low dielectric medium and improve the dispersion stability of the electrophoretic particles in the low dielectric medium for electrophoretic display application, polystyrene/titanium dioxide (PS/TiO2) core–shell particles were prepared via in-situ sol–gel method by depositing TiO2 on the PS particle which was positively charged with 2-(methacryloyloxy)ehyl trimethylammonium chloride (DMC). The morphology and average particle size of PS/TiO2 core–shell particles were observed by transmission electron microscopy (TEM), scanning electron microscope (SEM) and particle size analyzer. It was found that density of PS/TiO2 core–shell particles were reduced obviously and the particles can suspend in the low dielectric medium of low density. The PS/TiO2 core–shell particles can endure ultrasonic treatment because of the interaction between TiO2 and PS. Zeta potential and electrophoretic mobility of the fabricated core–shell particles in a low dielectric medium with charge control agent was measured to be −44.3 mV and −6.07 × 10−6 cm2/Vs, respectively, which presents potential in electronic paper application.  相似文献   

20.
Present paper reports the synthesis of SnO2–TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2–TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号