首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability analysis of viscoelastic curved pipes conveying fluid   总被引:1,自引:0,他引:1  
Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.  相似文献   

2.
郭梓龙  王琳  倪樵  贾青青  杨文正 《力学学报》2021,53(6):1769-1780
输流管道广泛应用于机械、航空、核电和石油等重要工程领域.为防止管道结构因流致振动破坏造成的损失, 很有必要对其稳定性、动力学响应及其调控进行深入研究.本文提出一种由惯容器、弹簧和阻尼器并联组成的减振器模型, 研究了这种接地惯容减振器对悬臂输流管稳定性和非线性振动的影响. 首先, 基于哈密顿原理给出了带有接地惯容减振器非保守系统的非线性动力学模型; 然后, 利用高阶伽辽金方法对非线性方程进行离散化; 最后, 分别从线性和非线性角度分析了不同减振器参数下输流管道的被动控制效果, 着重讨论了惯容系数和减振器安装位置对悬臂管稳定性和动态响应的影响机制.线性理论模型的研究结果显示, 接地惯容减振器可显著影响悬臂管的失稳临界流速, 故通过调节减振器参数能有效提高输流管道的稳定性;惯容系数和弹簧刚度对系统稳定性的控制效果还与减振器的安装位置密切相关.非线性理论模型的分析结果显示, 惯容系数和减振器位置对输流管的非线性动态响应也有显著影响, 且这种影响还依赖于管道的流速取值; 在某些参数条件下, 减振器还可使输流管道由周期运动演化为复杂的混沌行为. 本文研究结果表明, 通过设计合理的惯容式减振器参数, 可提升悬臂输流管道的稳定性并有效抑制其颤振幅值.   相似文献   

3.
In a three-part study, the first part being this paper, the investigation of the three-dimensional nonlinear dynamics of unrestrained and restrained cantilevered pipes conveying fluid is undertaken. The full derivation of the equations of motion in three dimensions for the plain cantilevered pipe is presented first in this paper, using a modified version of Hamilton's principle, adapted for an open system. Intermediate (between the clamped and free end) nonlinear spring constraints are then incorporated into the equations of motion via the method of virtual work. Furthermore, a point mass fixed at the free end of the pipe is also added to the system. The equations of motion are presented in dimensionless form and then discretized with Galerkin's method.  相似文献   

4.
分布式运动约束下悬臂输液管的参数共振研究   总被引:2,自引:0,他引:2  
王乙坤  王琳 《力学学报》2019,51(2):558-568
输液管道结构在航空、航天、机械、海洋、水利和核电等工程领域都有广泛应用,其稳定性、振动与安全评估备受关注.针对具有分布式运动约束悬臂输液管的非线性动力学模型,分别采用立方非线性弹簧和修正三线性弹簧来模拟运动约束的作用力,研究了管道在脉动内流激励下的参数共振行为.首先,从输液管系统的非线性控制方程出发,利用Galerkin方法进行离散化;然后,由Floquet理论得出线性系统在失稳前两个不同平均流速下脉动幅值和脉动频率变化时的共振参数区域;最后,考虑系统的几何非线性项和分布式非线性运动约束力的影响,求解了管道的非线性动力学响应,讨论了非线性项及运动约束力对管道参数共振行为的影响.研究结果表明,系统非线性共振响应的参数区域与线性系统的共振参数区域是一致的,分布式运动约束力对发生参数共振时管道的位移响应有显著影响;立方非线性弹簧和修正三线性弹簧模型所预测的分岔路径存有较大差异,但都可诱发管道在一定的参数激励下出现混沌运动.   相似文献   

5.
三参量固体模型粘弹性输流管道的动力特性分析   总被引:2,自引:0,他引:2  
推导了三参量固体模型粘弹性输流管道的振动微分方程,计算了在不同无量纲松弛系数和弹性常数比下管道的无量纲临界流速和无量纲自振复频率,并给出了前三阶复频率与流速的关系.计算结果表明,质量比、无量纲松弛系数及无量纲弹性常数比对输流管道的动力特性均有影响.  相似文献   

6.
The nonlinear dynamics of a fluid-conveying cantilevered pipe with loose constraints placed somewhere along its length is investigated. The main objective of this study is to determine the effects of several geometrical and physical parameters of the loose constraints on the characteristics and behavior of pipes conveying fluid. Based on the full nonlinear equation of motion, the dynamical behavior of the pipe system is investigated. Phase portraits and bifurcation diagrams are constructed for a selected set of system parameters. Typical results are firstly compared to numerical ones reported previously and excellent agreement is obtained. Then, the threshold flow velocities for several key bifurcations including pitchfork, period doubling, chaos, and sticking behaviors are predicted, showing that in many cases, the gap size, stiffness, and asymmetry of the loose constraints have remarkable effects on the nonlinear responses of the cantilevered pipe conveying fluid. For a pipe system with small/large constraint gap sizes, small constraint stiffness, or large constraint offset, some of the complex dynamical behaviors including chaos and period-doubling bifurcations would disappear, at least in the flow velocity range of interest.  相似文献   

7.
Based on the differential constitutive relationship of linear viscoelastic, material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model (flutter instability) are calculated with the modified finite difference method in the form of the recurrence formula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical, calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.  相似文献   

8.
In this paper, the nonlinear responses of a loosely constrained cantilevered pipe conveying fluid in the context of three-dimensional (3-D) dynamics are investigated. The pipe is allowed to oscillate in two perpendicular principal planes, and hence its 3-D motions are possible. Two types of motion constraints are considered. One type of constraints is the tube support plate (TSP) which comprises a plate with drilled holes for the pipe to pass through. A second type of constraints consists of two parallel bars (TPBs). The restraining force between the pipe and motion constraints is modeled by a smoothened-trilinear spring. In the theoretical analysis, the 3-D version of nonlinear equations is discretized via Galerkin’s method, and the resulting set of equations is solved using a fourth-order Runge–Kutta integration algorithm. The dynamical behaviors of the pipe system for varying flow velocities are presented in the form of bifurcation diagrams, time traces, power spectra diagrams and phase plots. Results show that both types of motion constraints have a significant influence on the dynamic responses of the cantilevered pipe. Compared to previous work dealing with the loosely constrained pipe with motions restricted to a plane, both planar and non-planar oscillations are explored in this 3-D version of pipe system. With increasing flow velocity, it is shown that both periodic and quasi-periodic motions can occur in the system of a cantilever with TPBs constraints. For a cantilevered pipe with TSP constraints, periodic, chaotic, quasi-periodic and sticking behaviors are detected. Of particular interest of this work is that quasi-periodic motions may be induced in the pipe system with either TPBs or TSP constraints, which have not been observed in the 2-D version of the same system. The results obtained in this work highlight the importance of consideration of the non-planar oscillations in cantilevered pipes subjected to loose constraints.  相似文献   

9.
粘弹性地基上粘弹性输流管道的稳定性分析   总被引:1,自引:0,他引:1  
从Winkler假设和单轴线性粘弹性本构方程出发,推导了Kelvin-Voigt粘弹性地基上三参量固体模型输流管道的运动微分方程,采用改进的有限差分法,分析了管道和地基的粘弹性参数对输流管道无量纲复频率和无量纲流速之间的变化关系的影响。  相似文献   

10.
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.  相似文献   

11.
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support. The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration. The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method. The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter,nonlinear spring stiffness. Based on this, the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness. The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.  相似文献   

12.
含集中质量悬臂输流管的稳定性与模态演化特性研究   总被引:2,自引:0,他引:2  
易浩然  周坤  代胡亮  王琳  倪樵 《力学学报》2020,52(6):1800-1810
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.   相似文献   

13.
Nonlinear dynamics of an extensible cantilevered pipe conveying pulsating flow is considered in this paper. The fluid flow fluctuates harmonically and exhausts via a nozzle attached to the end of the pipe. Taking into account the extensibility assumption, the coupled nonlinear lateral–longitudinal equations of motion are derived using Hamilton's principle and discretized via Galerkin's method. The adaptive time step Adams algorithm is applied to extract the time response, and then the bifurcation, power spectral density and phase plane maps are plotted for some case studies. Effects of some geometrical parameters such as flow mass, pulsating flow frequency, gravity, nozzle mass and nozzle aspect ratio parameters are studied on the dynamics of such system and the validity of extensibility assumption is investigated and some conclusions are drawn.  相似文献   

14.
In this paper, the nonlinear dynamics of a pipe imperfectly supported at the upstream end and free at the other and conveying fluid is investigated. The imperfect support is modelled via cubic translational and rotational springs. The equation of motion is obtained via Hamilton’s principle for an open system, and the Galerkin method is used for discretizing the resulting partial differential equation. The dynamics of a system with either strong rotational or strong translational stiffness is examined in details. Numerical results show that similarly to a cantilevered pipe, the system undergoes a supercritical Hopf bifurcation leading to period-1 limit cycle oscillations. The Hopf bifurcation may, however, occur at a much lower flow velocity compared to the perfect system. At higher flow velocities, quasi-periodic and chaotic-like motions may be observed. The amplitude of transverse displacement is generally much higher than that for a cantilevered pipe, mainly due to large-amplitude rigid-body motion. In addition, effects of the mass ratio, internal dissipation, hardening- or softening-type nonlinearity, as well as concentrated- or distributed-type nonlinearity on the dynamics of the system are examined.  相似文献   

15.
本文建立了具有弹性支承的圆管在内外部流激发下的力学模型.推导了内部流与静止外部流作用下圆管的耦联振动方程.提出了确定弹性系数的方法.采用振型叠加法分析圆管动力特性问题.对内部流与静止外部流情况下圆管固有频率进行了计算和测量,计算值与实验值吻合较好.另外,对内外流同时激发下圆管的固有频率进行了测量,得到若干对工程实际有用的结论.  相似文献   

16.
The nonlinear governing motion equation of slightly curved pipe with conveying pulsating fluid is set up by Hamilton’s principle. The motion equation is discretized into a set of low dimensional system of nonlinear ordinary differential equations by the Galerkin method. Linear analysis of system is performed upon this set of equations. The effect of amplitude of initial deflection and flow velocity on linear dynamic of system is analyzed. Curves of the resonance responses about \(\varOmega \approx {\omega _\mathrm{{1}}}\) and \(\varOmega \approx \mathrm{{2}}{\omega _\mathrm{{1}}}\) are performed by means of the pseudo-arclength continuation technique. The global nonlinear dynamic of system is analyzed by establishing the bifurcation diagrams. The dynamical behaviors are identified by the phase diagram and Poincare maps. The periodic motion, chaotic motion and quasi-periodic motion are found in this system.  相似文献   

17.
Based on the nonlinear mathematical model of motion of a horizontally cantilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration.The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.  相似文献   

18.
IntroductionItiswell_knownthatsimplysupportedpipesconveyingfluidarenamedasgyroscopiccon servativesystembecauseitsenergyattheexitisequaltothatattheenter[1].Thissystemwasstudiedbysomescholarsathomeandabroad .Paidoussis[2 ]studiedtheproblemofdynamicsandstabi…  相似文献   

19.
For improved stability of fluid-conveying pipes operating under the thermal environment, functionally graded materials (FGMs) are recommended in a few recent studies. Besides this advantage, the nonlinear dynamics of fluid-conveying FG pipes is an important concern for their engineering applications. The present study is carried out in this direction, where the nonlinear dynamics of a vertical FG pipe conveying hot fluid is studied thoroughly. The FG pipe is considered with pinned ends while the internal hot fluid flows with the steady or pulsatile flow velocity. Based on the Euler–Bernoulli beam theory and the plug-flow model, the nonlinear governing equation of motion of the fluid-conveying FG pipe is derived in the form of the nonlinear integro-partial-differential equation that is subsequently reduced as the nonlinear temporal differential equation using Galerkin method. The solutions in the time or frequency domain are obtained by implementing the adaptive Runge–Kutta method or harmonic balance method. First, the divergence characteristics of the FG pipe are investigated and it is found that buckling of the FG pipe arises mainly because of temperature of the internal fluid. Next, the dynamic characteristics of the FG pipe corresponding to its pre- and post-buckled equilibrium states are studied. In the pre-buckled equilibrium state, higher-order parametric resonances are observed in addition to the principal primary and secondary parametric resonances, and thus the usual shape of the parametric instability region deviates. However, in the post-buckled equilibrium state of the FG pipe, its chaotic oscillations may arise through the intermittent transition route, cyclic-fold bifurcation, period-doubling bifurcation and subcritical bifurcation. The overall study reveals complex dynamics of the FG pipe with respect to some system parameters like temperature of fluid, material properties of FGM and fluid flow velocity.  相似文献   

20.
The nonlinear forced vibrations of a cantilevered pipe conveying fluid under base excitations are explored by means of the full nonlinear equation of motion, and the fourthorder Runge-Kutta integration algorithm is used as a numerical tool to solve the discretized equations. The self-excited vibration is briefly discussed first, focusing on the effect of flow velocity on the stability and post-flutter dynamical behavior of the pipe system with parameters close to those in previous experiments. Then, the nonlinear forced vibrations are examined using several concrete examples by means of frequency response diagrams and phase-plane plots. It shows that, at low flow velocity, the resonant amplitude near the first-mode natural frequency is larger than its counterpart near the second-mode natural frequency. The second-mode frequency response curve clearly displays a softening-type behavior with hysteresis phenomenon, while the first-mode frequency response curve almost maintains its neutrality. At moderate flow velocity,interestingly, the first-mode resonance response diminishes and the hysteresis phenomenon of the second-mode response disappears. At high flow velocity beyond the flutter threshold, the frequency response curve would exhibit a quenching-like behavior. When the excitation frequency is increased through the quenching point, the response of the pipe may shift from quasiperiodic to periodic. The results obtained in the present, work highlight the dramatic influence of internal fluid flow on the nonlinear forced vibrations of slender pipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号