首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the temperature range 100–650 K, the linear expansion coefficient β was measured for the SiC/Si biomorphic composite, a new cellular ecoceramic fabricated from a porous cellular carbon matrix prepared through pyrolysis of wood (white eucalyptus) in an argon ambient with subsequent infiltration of molten Si into the channels of the matrix and the formation of 3C-SiC. The SiC/Si samples studied had an “excess” ~30% volume concentration of Si and a porosity of ~13–15%. The measurements were conducted on samples cut along (β) and across (β) the tree growth direction. The measured values of β(T) of SiC/Si are compared with literature data available for the linear expansion coefficients of Si and 3C-SiC.  相似文献   

2.
采用半固态搅拌铸造法制备Al Si7-Si C复合材料,并利用真空压铸工艺实现了其近净成形,结合第一性原理计算方法研究了共晶Si对Si C颗粒和基体界面结合强度的影响.结果显示,在Al Si7-Si C复合材料中,发现较为严重的共晶Si偏析现象,当Si C颗粒同时处于共晶Si和α-Al边界时,形成了少量的共晶Si夹杂、被大量共晶Si包裹、完全被共晶Si包裹三种典型的界面.第一性原理计算结果显示,在C端和Si端的Si/Si C界面中,弛豫后top Si1配位方式具有最大的粘附功,与Al/Si C界面相比,Si/Si C界面具有更高的结合强度.Si偏析相提高了界面处的电荷密度,因而具有更好的界面结构稳定性.  相似文献   

3.
The electrical resistivity ρ and the thermopower coefficient α of a SiC/Si biomorphic composite fabricated from a porous carbon matrix [prepared through pyrolysis of wood (white eucalyptus)] by infiltrating molten Si into the empty channels of the matrix were measured in the temperature ranges 100–950 and 100–750 K, respectively. Silicon reacts chemically with the carbon of the matrix to produce 3C-SiC, which, in combination with the excess Si unreacted with carbon, forms the SiC/Si biomorphic composite. The SiC/Si samples studied had a concentration of “excess” Si of ~30 vol % and a porosity of ~13–15 vol %. Measurements of ρ were carried out on samples cut either along (ρ) or across (ρ) the tree growth direction, and α was measured on a sample cut along the tree growth direction.  相似文献   

4.
The synthesis of SiC–Si–C materials by siliconizing porous carbon matrices has been considered, and a method of determining their phase composition has been devised. Preforms of two types have been siliconized, i.e., biomorphic carbon matrices prepared by wood pyrolysis and artificial porous graphites prepared by mixing and compacting carbon powders with an organic binder. The calculated phase compositions are in good agreement with microstructure metallographic examination data.  相似文献   

5.
以聚碳硅烷(PCS)为原料,通过炉内成球技术制备SiC空心陶瓷微球,讨论辐照交联和高温碳化对SiC陶瓷微球化学成分、成键结构和表面特性的影响。结果表明,PCS在热处理过程中的失重率约为35%,其分解温度在400~800℃之间。微球经电子束辐照后会生成以Si—C—Si和Si一O一Si骨架结构为主的三维网络交联结构。碳化过程使Si—C_32键,Si—H键和C—H键断裂,生成以Si—C为主的无定形态Si(C。辐照的均化作用使高温热处理碳化的微球能够维持完好的球壳结构,且具有更好的表面粗糙度和平整性。  相似文献   

6.
SiC nanofiber with high crystallinity was synthesized through the pyrolysis of polycarbomethylsilane (PS) coated platelet carbon nanofiber (PCNF) over 700 °C and burning PCNF under the oxidative atmosphere. The as-prepared β-SiC nanofiber exhibited a diameter less than 100 nm and a medium surface area of 50 m2/g. The crystallinity of silicon carbide (SiC) nanofiber increases with increasing heat-treatment temperature, showing the formation of high crystalline SiC nanofiber at 1400 °C. PCNF can be used as a unique template to govern the shape, crystallinity and morphology of SiC.  相似文献   

7.
Nitrogen ions were implanted into SiC ceramics by using ion implantation technology (N+-SiC). The surface structure and chemical bonds of N+-SiC ceramics were determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and their nanohardness was measured by nanoindenter. The friction and wear properties of the N+-SiC/SiC tribo-pairs were investigated and compared with those of SiC/SiC tribo-pairs in water using ball-on-disk tribo-meters. The wear tracks on the N+-SiC ceramics were observed by non-contact surface profilometer and scanning electron microscope (SEM) and their wear volumes were determined by non-contact surface profilometer. The results show that the N+-SiC ceramics were mainly composed of SiC and SiCN phase and SiN, CC, CN and CN bonds were formed in the implantation layer. The highest hardness of 22.3 GPa was obtained as the N+-SiC ceramics implanted at 50 keV and 1 × 1017 ions/cm2. With an increase in nitrogen ion fluence, the running-in period of N+-SiC/SiC tribo-pairs decreased, and the mean stable friction coefficient decreased from 0.049 to 0.024. The N+-SiC ceramics implanted at 50 keV and 5 × 1017 ions/cm2 exhibited the excellent tribological properties in water. In comparison of SiC/SiC ceramic tribo-pairs, the lower friction coefficient and lower wear rate for the N+-SiC/SiC tribo-pairs were acquired.  相似文献   

8.
This paper reports on the results of a comparative investigation into the elastic and microplastic properties of biomorphic SiC/Si composites and biomorphic SiC prepared by pyrolysis of oak and eucalyptus with subsequent infiltration of molten silicon into a carbon matrix and additional chemical treatment to remove excess silicon. The acoustic studies were performed by the composite oscillator technique using resonant longitudinal vibrations at frequencies of about 100 kHz. It is shown that, in biomorphic SiC (as in biomorphic SiC/Si) at small-amplitude strains ε, adsorption and desorption of the environmental (air) molecules determine to a considerable extent the Young’s modulus E and the internal friction (decrement of acoustic vibrations δ) and that the changes in E and δ at these amplitudes are irreversible. The stress-microplastic strain curves are constructed from the acoustic data for the materials under study at temperatures of 100 and 290 K.  相似文献   

9.
The thermal conductivity κ and electrical resistivity ρ of a white-eucalyptus cellular carbon preform used to fabricate silicon-carbide-based (SiC/Si) biomorphic ceramics have been measured in the 5-to 300-K temperature interval. The carbon preform was obtained by pyrolysis (carbonization) of white-eucalyptus wood at 1000°C in an argon ambient. The κ(T) and ρ(T) relations were measured on samples cut along the tree growth direction. The experimental data obtained were processed.  相似文献   

10.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

11.
Temperature dependences of the Young’s modulus E of wood-derived biomorphic SiC ceramics fabricated through pyrolysis of eucalyptus and oak with subsequent silicon infiltration were studied using electrostatic resonance excitation of longitudinal vibrations. The decrease in E with increasing temperature observed to occur in eucalyptus SiC in the temperature interval 20–1000°C was found to be accompanied by several jumps (splittings) in the resonance frequency, which persist after the sample is heated to 1000°C. The oak-SiC ceramic exhibits only one jump, which vanishes after heating to 1000°C. The observed anomalies are assigned to the presence of defects (including pores) in the materials studied.  相似文献   

12.
层状陶瓷材料的电磁屏蔽效能对结构功能一体化层状陶瓷材料的设计具有重要影响。采用流延法与化学气相渗透(chemical vapor infiltration,CVI)工艺相结合制备SiC_w/Si C层状陶瓷,研究碳化硅颗粒(Si C particle,SiCp)、氮化硅颗粒(Si_3N_4particle,Si_3N_4p)对SiC_w/Si C层状陶瓷电磁屏蔽性能的影响。结果表明:SiC_w/Si C层状陶瓷具有较高的电磁屏蔽性能,颗粒的加入有助于提高层状陶瓷的电磁屏蔽性能。颗粒粒径越小,材料的电磁屏蔽性能越好;并且SiCp的电磁屏蔽作用强于Si_3N_4p。  相似文献   

13.
Bioactivity in vivo of ceramic materials has been related to their surface micro-topography and may be estimated by means of simulated body fluid method in vitro. In order to investigate the effect of surface topographies of akermanite ceramics on bioactivity in vitro, akermanite ceramics were synthesized by sol-gel method and different surface topographies of disc-shaped akermanite ceramics were prepared by polishing with different SiC sandpapers. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. The bioactivity in vitro of ceramics with different surface states was evaluated by soaking the ceramics in simulated body fluid (SBF). And the samples after being soaked were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). The results showed that the amounts of precipitated apatite on the ceramics with different surface roughness after being soaked in SBF were different and the bioactivity in vitro of ceramic with rough surface was significantly higher than that of ceramic with smooth surface. The study suggested that suitable surface roughness may improve the bioactivity in vitro of akermanite ceramics.  相似文献   

14.
The thermal conductivity κ and electrical resistivity ρ of a SiC/Si biomorphic composite were measured at temperatures T = 5–300 K. The composite is a cellular ecoceramic fabricated by infiltrating molten Si into the channels of a cellular carbon matrix prepared via pyrolysis of wood (white eucalyptus) in an argon ambient. The κ(T) and ρ(T) relations were measured on a sample cut along the direction of tree growth. The experimental results obtained are analyzed.  相似文献   

15.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

16.
The spreading time for millimeter-sized droplets of nonreactive molten silicides on silicon carbide in high vacuum is several orders of magnitude higher than typical spreading times observed in nonreactive metal/ceramic systems. To explain this paradox, two types of experiments were performed: (i) wetting experiments for various nonreactive CuSi alloys on -SiC single crystals using the sessile drop and dispensed drop techniques, with emphasis on determining the initial contact angle; and (ii) characterization of surface chemistry of SiC after different heat treatments in high-vacuum furnaces. It is shown that spreading kinetics in these systems are controlled by the kinetics of removing of wetting barriers present or developed in situ on SiC surface.  相似文献   

17.
Epitaxial 3C-SiC grains are formed at 1190 °C in the top region of silicon, when Si wafers coated by SiO2 are annealed in CO atmosphere. The formed SiC grains are 40-50 nm high and 100 nm wide in cross-section and contain only few defects. Main advantage of the method is that the final structure is free of voids.The above method is further developed for the generation of SiC nanocrystals, embedded in SiO2 on Si, and aligned parallel with the interface. The nanometer-sized SiC grains were grown into SiO2 close to the Si/SiO2 interface by a two-step annealing of oxide covered Si: first in a CO, than in a pure O2 atmosphere. The first (carbonization) step created epitaxial SiC crystallites grown into the Si surface, while the second (oxidation) step moved the interface beyond them. Conventional and high resolution cross-sectional electron microscopy showed pyramidal Si protrusions at the Si/SiO2 interface under the grains. The size of the grains, as well as their distance from the Si/SiO2 interface (peak of pyramids) can be controlled by the annealing process parameters. The process can be repeated and SiC nanocrystals (oriented in the same way) can be produced in a multilevel structure.  相似文献   

18.
Large quantities of Ti-catalyzed β-SiC nanowhiskers were efficiently prepared via a SHS process by pyrolysis of poly (tetrafluoroethylene) (PTFE). The as-synthesized β-SiC whiskers appear to be structurally uniform with width from 50?nm to 2?μm and length of up to several hundred microns, and they are single crystalline in nature. Results demonstrated that Ti particles could significantly accelerate the absorption and dissolving of Si- and C-related fragments. A Ti–Si–C alloy droplet was detected at the end of an individual β-SiC whisker, which indicated that β-SiC whiskers were grown via the vapor–liquid–solid (VLS) growth mechanism. The elastic bending modulus of individual whiskers was measured by an in-situ transmission electron microscopy (TEM) process; the average value of the elastic bending modulus of individual as-synthesized whiskers was 554?GPa.  相似文献   

19.
SiC based Si/SiC heterojunction and its rectifying characteristics   总被引:2,自引:0,他引:2       下载免费PDF全文
朱峰  陈治明  李连碧  赵顺峰  林涛 《中国物理 B》2009,18(11):4966-4969
The Si on SiC heterojunction is still poorly understood, although it has a number of potential applications in electronic and optoelectronic devices, for example, light-activated SiC power switches where Si may play the role of an light absorbing layer. This paper reports on Si films heteroepitaxially grown on the Si face of (0001) n-type 6H-SiC substrates and the use of B2H_6 as a dopant for p-Si grown at temperatures in a range of 700--950~\du. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) tests have demonstrated that the samples prepared at the temperatures ranged from 850~℃ to 900~℃ are characterized as monocrystalline silicon. The rocking XRD curves show a well symmetry with FWHM of 0.4339° Omega. Twin crystals and stacking faults observed in the epitaxial layers might be responsible for widening of the rocking curves. Dependence of the crystal structure and surface topography on growth temperature is discussed based on the experimental results. The energy band structure and rectifying characteristics of the Si/SiC heterojunctions are also preliminarily tested.  相似文献   

20.
SiC whiskers were grown from the reaction of silicon monoxide (SiO) with activated carbon containing iron impurities. Growth proceeds through a VLS growth mechanism with SiO and CO as reacting gases. HRTEM combined with EDS shows that the SiC whisker is topped by a Fe3Si catalyst droplet. The SiC whisker is found to be one-dimensionally disordered along the [111] growth direction of an fcc crystal structure. Although the catalyst droplet is usually larger than the top face of the whisker, we observed a number of situations where the diameter of the droplet was smaller. The study of the SiC-Fe3Si interface showed that the growth is nucleated from the edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号