首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals is developed. The theory accounts for: an arbitrary number and arrangement of dislocation lines over a slip plane; the long-range elastic interactions between dislocation lines; the core structure of the dislocations resulting from a piecewise quadratic Peierls potential; the interaction between the dislocations and an applied resolved shear stress field; and the irreversible interactions with short-range obstacles and lattice friction, resulting in hardening, path dependency and hysteresis. A chief advantage of the present theory is that it is analytically tractable, in the sense that the complexity of the calculations may be reduced, with the aid of closed form analytical solutions, to the determination of the value of the phase field at point-obstacle sites. In particular, no numerical grid is required in calculations. The phase-field representation enables complex geometrical and topological transitions in the dislocation ensemble, including dislocation loop nucleation, bow-out, pinching, and the formation of Orowan loops. The theory also permits the consideration of obstacles of varying strengths and dislocation line-energy anisotropy. The theory predicts a range of behaviors which are in qualitative agreement with observation, including: hardening and dislocation multiplication in single slip under monotonic loading; the Bauschinger effect under reverse loading; the fading memory effect, whereby reverse yielding gradually eliminates the influence of previous loading; the evolution of the dislocation density under cycling loading, leading to characteristic ‘butterfly’ curves; and others.  相似文献   

4.
The bimodal plasticity model of fibre-reinforced materials is currently available and applicable only in association with thin-walled fibrous composites containing a family of straight fibres which are conveniently assumed parallel with the x1-axis of an appropriately chosen Cartesian co-ordinate system. Based on reliable experimental evidence, the model suggests that plastic slip in the composite operates in two distinct modes; the so-called matrix dominated mode (MDM) which depends on a matrix yield stress, and the fibre dominated mode (FDM) which depends also on the fibre yield stress. Each mode is activated by different states of applied stress, has its own yield surface (or surfaces) in the stress space and has its own segment on the overall yield surface of the composite. This paper employs theory of tensor representations and produces a form-invariant generalisation of both modes of the model. This generalisation furnishes the model with direct applicability to relevant plasticity problems, regardless of the shape of the fibres or the orientation of the co-ordinate system. It thus provides a proper mathematical foundation that underpins important physical concepts associated with the model while it also elucidates several technical relevant issues. A most interesting of those issues is the revelation that activation of the MDM plastic regime is possible only if the applied stress state allows the fibres to act like they are practically inextensible. Moreover, activation of the more dominant, between the two MDM plastic slip branches is possible only if conditions of material incompressibility hold, in addition to the implied condition of fibre inextensibility. A direct mathematical connection is thus achieved between basic, experimentally verified concepts of the bimodal plasticity model and a relevant mathematical model originated earlier from the theory of ideal fibre-reinforced materials. An additional issue of discussion involves the number of independent yield stress parameters that the bimodal theory needs to take into consideration. Moreover, an analytical expression is provided of a relatively simple mathematical surface that possesses all known features of the FDM yield surface; currently captured with the aid of both experimental and computational means. The present study is guided by the existing relevant experimental evidence which, however, is principally associated with the plastic behaviour of solids reinforced by strong fibres. Nevertheless, several of the outlined developments are expected to be applicable to composite materials containing a single family of more compliant or even weak fibres.  相似文献   

5.
A new strain gradient plasticity theory is formulated to accommodate more than one material length parameter. The theory is an extension of the classical J2 flow theory of metal plasticity to the micron scale. Distinctive features of the proposed theory as compared to other existing theories are the simplicities of mathematical formulation, numerical implementation and physical interpretation.  相似文献   

6.
In this paper, general closest point projection algorithm is derived for the elastoplastic behavior of a cross-section of a beam finite element. For given section deformations, the section forces (stress resultants) and the section tangent stiffness matrix are obtained as the response for the cross-section. Backward Euler time integration rule is used for the solution of the nonlinear evolution equations. The solution yields the general closest projection algorithm for stress resultants plasticity model. Algorithmic consistent tangent stiffness matrix for the section is derived. Numerical verification of the algorithms in a mixed formulation beam finite element proves the accuracy and robustness of the approach in simulating nonlinear behavior.  相似文献   

7.
In this paper we study the connection between four models describing dislocation dynamics: a generalized 2D Frenkel-Kontorova model at the atomic level, the Peierls-Nabarro model, the discrete dislocation dynamics and a macroscopic model with dislocation densities. We show how each model can be deduced from the previous one at a smaller scale.   相似文献   

8.
Carbon nanotubes (CNTs) possess exceptional mechanical properties, and when introduced into a metal matrix, it could significantly improve the elastic stiffness and plastic strength of the nanocomposite. But current processing techniques often lead to an agglomerated state for the CNTs, and the pristine CNT surface may not be able to fully transfer the load at the interface. These two conditions could have a significant impact on its strengthening capability. In this article we develop a two-scale micromechanical model to analyze the effect of CNT agglomeration and interface condition on the plastic strength of CNT/metal composites. The large scale involves the CNT-free matrix and the clustered CNT/matrix inclusions, and the small scale addresses the property of these clustered inclusions, each containing the randomly oriented, transversely isotropic CNTs and the matrix. In this development the concept of secant moduli and a field fluctuation technique have been adopted. The outcome is an explicit set of formulae that allows one to calculate the overall stress-strain relations of the CNT nanocomposite. It is shown that CNTs are indeed a very effective strengthening agent, but CNT agglomeration and imperfect interface condition can seriously reduce the effective stiffness and elastoplastic strength. The developed theory has also been applied to examine the size (diameter) effect of CNTs on the elastic and elastoplastic response of the composites, and it was found that, with a perfect interface contact, decreasing the CNT radius would enhance the overall stiffness and plastic strength, but with an imperfect interface the size effect is reversed. A comparison of the theory with some experiments on the CNT/Cu nanocomposite serves to verify the applicability of the theory, and it also points to the urgent need of eliminating all CNT agglomeration and improving the interface condition if the full potential of CNT reinforcement is to be realized.  相似文献   

9.
We present dislocation simulations involving the collective behavior of partials and extended full dislocations in nanocrystalline materials. While atomistic simulations have shown the importance of including partial dislocations in high strain rate simulations, the behavior of partial dislocations in complex geometries with lower strain rates has not been explored. To account for the dissociation of dislocations into partials we include the full representation of the gamma surface for two materials: Ni and Al. During loading, dislocation loops are emitted from grain boundaries and expand into the grain interiors to carry the strain. In agreement with high strain rate simulations we find that Al has a higher density of extended full dislocations with smaller stacking fault widths than Ni. We also observe that configurations with smaller average grain size have a higher density of partial dislocations, but contrary to simplified analytical models we do not find a critical grain size below which there is only partial dislocation-mediated deformation. Our results show that the density of partial dislocations is stable in agreement with in situ X-ray experiments that show no increase of the stacking fault density in deformed nanocrystalline Ni (Budrovic et al., 2004). Furthermore, the ratio between partial and extended full dislocation contribution to strain varies with the amount of deformation. The contribution of extended full dislocations to strain grows beyond the contribution of partial dislocations as the deformation proceeds, suggesting that there is no well-defined transition from full dislocation- to partial dislocation-mediated plasticity based uniquely on the grain size.  相似文献   

10.
A pathway tree is constructed by recursively duplicating a single reconstructive martensitic transformation path with respect to lattice symmetries and point-group rotations. An energy potential built on this pathway is implemented in a phase-field technique in large strain framework, with the transformational strain as the order parameter. A specific splitting between non-dissipative elastic behavior and the dissipative evolution of the order parameter allows for the modeling of acoustic waves during rapid transformations. A simple toy-model transition from hexa- to square-lattice successfully demonstrates the possibility to model reconstructive martensitic transformations for a large number of variants (more than one hundred). Pure traction applied to our toy-model shows that variants can nucleate into previously created variants, with a hierarchical nucleation of variants spanning over five levels of transformation.  相似文献   

11.
The plastic deformation field near the horizontal surface of a half space of perfectly plastic material associated with an indenting rotating rigid tooth is studied using slip line theory. The tooth is one of many on a roll surface and indents first into the half-space material and then rotates about the roll center. A slip line field is proposed for the deforming plastic region and a solution scheme is outlined. The emphasis is on determining the shape of the deforming region, especially that of the free surface. The study has a potential application in roughness transfer in metal forming processing.  相似文献   

12.
We propose a new method for the homogenization of hysteresis models of plasticity. For the one-dimensional wave equation with an elasto-plastic stress-strain relation we derive averaged equations and perform the homogenization limit for stochastic material parameters. This generalizes results of the seminal paper by Franců and Krejčí. Our approach rests on energy methods for partial differential equations and provides short proofs without recurrence to hysteresis operator theory.   相似文献   

13.
Macro slip theory of plasticity for polycrystalline solids   总被引:1,自引:0,他引:1  
A macro slip theory is presented in this paper. Four independent slip systems are proposed for polycrystalline solids. Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron. It is proved that for proportional loading, present results are identical with the classical flow theory of plasticity. For nonproportional loading, the macro slip theory shows good predicting ability. The calculated results are in good agreement with the experimental data. The project supported by Chinese Academy of Science  相似文献   

14.
We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the “higher-order” boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.  相似文献   

15.
Summary In this paper, we present a micro-structured model for describing global deformations of heterogeneous mixtures. In particular, for a saturated solid-fluid mixture, we regard the solid volume fraction as a microstructural parameter so as to enlarge the space of admissible deformations with respect to the classical theory of mixtures. According to the variational approach, the governing equations are obtained as the stationarity of a suitable action functional. The micro-structured model is then forced to establish a second-gradient mixture theory, by introducing among the considered state parameters a suitable internal constraint. Finally, we determine under which (integrability) conditions the additional balance laws, typically employed to close the theory of porous media endowed with the volume fraction, can fit the variational framework. The authors wish to thank Prof. Francesco dell'Isola from University of Rome La Sapienza for his constructive criticism about the variational approach to continuum mechanics and the interpretation of the volume-fraction balance law.  相似文献   

16.
A primary flexure problem defined by Kirchhoff theory of plates in bending is considered. Significance of auxiliary function introduced earlier in the in-plane displacements in resolving Poisson-Kirchhoff's boundary conditions paradox is reexamined with reference to reported sixth order shear deformation theories, in particular, Reissner's theory and Hencky's theory. Sixth order modified Kirchhoff's theory is extended here to include shear deformations in the analysis.  相似文献   

17.
18.
The purpose of this article is to develop an asymptotic Eulerian approach in plate and shell theory valid for large displacements. With this Eulerian approach, the dead load assumption generally used with Lagrangian approaches can be dropped. We also obtain a membrane model which takes into account following forces, whose direction can vary during large displacements.  相似文献   

19.
A triaxial constitutive law for concrete within the framework of isotropic damage combined with plasticity is proposed in this paper. It covers typical characteristics of concrete like non-linear uniaxial compression and tension, bi- and triaxial failure criteria and dilatancy with a unified strain-based approach. Thus, this model is quite simple and especially suitable for strain-driven methods like common finite elements. It is complemented with a regularization method based on the crack band approach. A further issue is discussed with procedures for the model parameter determination for a wide range of concrete grades. The application of the model is demonstrated with typical benchmark tests for plain concrete.  相似文献   

20.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号