首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various micromechanics schemes by the average Eshelby tensor for non-elliptical inhomogeneities is in general inadmissible.  相似文献   

2.
In the present work, microelastic and macroelastic fields are presented for the case of spherical inclusions embedded in an infinite microstretch material using the concept of Green’s functions. The Eshelby tensors are obtained for a spherical inclusion and it is shown that their forms for microelongated, micropolar and the classical cases are the proper limiting cases of the Eshelby tensors of microstretch materials.  相似文献   

3.
In 1997, H. Nozaki and M. Taya found numerically that for any regular polygonal inclusion except for a square, both the Eshelby tensor at the center and the average Eshelby tensor over the inclusion domain are equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Then in 2001, these remarkable properties were mathematically justified by Kawashita and Nozaki. In this paper, a more radical property is presented for a rotational symmetrical inclusion: For any N-fold (N is an integer greater than 2 and unequal to 4) rotational symmetrical inclusion, the arithmetic mean of the Eshelby tensors at N rotational symmetrical points in the inclusion is the same as the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. It follows that the Eshelby tensor at the center and the average Eshelby tensor over the rotational symmetrical inclusion domain are identical to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion as well. This paper shows that although the Eshelby property does not hold for non-ellipsoidal inclusions, the Eshelby tensor for a rotational symmetrical inclusion satisfies the arithmetic mean property. Mathematics Subject Classifications (2000) 73C02.  相似文献   

4.
An analytical approach to calculate the stress of an arbitrary located penny-shaped crack interacting with inclusions and voids is presented. First, the interaction between a penny-shaped crack and two spherical inclusions is analyzed by considering the three-dimensional problem of an infinite solid, composed of an elastic matrix, a penny-shaped crack and two spherical inclusions, under tension. Based on Eshelby’s equivalent inclusion method, superposition theory of elasticity and an approximation according to the Saint–Venant principle, the interaction between the crack and the inclusions is systematically analyzed. The stress intensity factor for the crack is evaluated to investigate the effect of the existence of inclusions and the crack–inclusions interaction on the crack propagation. To validate the current framework, the present predictions are compared with a noninteracting solution, an interacting solution for one spherical inclusion, and other theoretical approximations. Finally, the proposed analytical approach is extended to study the interaction of a crack with two voids and the interaction of a crack with an inclusion and a void.  相似文献   

5.
By the aid of irreducible decomposition, the average Eshelby tensor can be expressed by two complex coefficients in 2D Eshelby problem. This paper proved the limitation of complex coefficients based on the span of elastic strain energy density. More discussions yielded the constraints on the sampling of module and phase difference of complex coefficients. Using this information, we obtained that the maximum relative error is 65.78% after an ellipse approximation. These results, as a supplement to our previous paper, further implied that Eshelby's solution for an ellipsoidal inclusion could not be applied to non-ellipsoidal inclusions without taking care.  相似文献   

6.
Consider an infinite thermally conductive medium characterized by Fourier’s law, in which a subdomain, called an inclusion, is subjected to a prescribed uniform heat flux-free temperature gradient. The second-order tensor field relating the gradient of the resulting temperature field over the medium to the uniform heat flux-free temperature gradient is referred to as Eshelby’s tensor field for conduction. The present work aims at deriving the general properties of Eshelby’s tensor field for conduction. It is found that: (i) the trace of Eshelby’s tensor field is equal to the characteristic function of the inclusion, independently of the latter’s shape; (ii) the isotropic part of Eshelby’s tensor field over the inclusion of arbitrary shape is identical to Eshelby’s tensor field over a 2D circular or 3D spherical inclusion; (iii) when the medium is made of an isotropic material and when the inclusion has some specific rotational symmetries, the value of the Eshelby’s tensor field evaluated at the inclusion gravity center and the symmetric average of Eshelby’s tensor fields are both equal to Eshelby’s tensor field for a 2D circular or 3D spherical inclusion. These results are then extended, with the help of a linear transformation, to the general case where the medium consists of an anisotropic conductive material. The method elaborated and results obtained by the present work are directly transposable to the physically analogous transport phenomena of electric conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically identical phenomenon of anti-plane elasticity.  相似文献   

7.
A “strange” particularity of polyhedral inclusions and of fibres of regular polygonal cross sections has been recently stressed in the literature. For respectively fully or transversally isotropic elasticity of the embedding material, they have a mean and a central Green operator integral both equal to the uniform one of respectively the sphere or the cylindrical fibre. In using the Radon transform (RT) method, this particularity is here shown to be shared by much larger shape types in the same limits of material elasticity symmetry. As a subcase, even more shape types fulfill the similar particularity for material linear properties of second-rank characteristic tensor, such as thermal conductivity, magnetic or dielectric properties. When calculated using the RT method, the modified Green operator integral at any interior point of a bounded domain (inclusion) takes the form of a weighted average over an angular distribution of a single elementary operator. The weight function is geometrically defined from the characteristic function of the domain, and the four-rank or second-rank elementary operator depends on the material linear property of concern. The RT method simply shows that the noticed particularity is due to matching symmetry between the inclusion shape (through the weight function) and the material property (through the elementary operator). The general geometrical characteristics of the inclusion shapes belonging to these sphere-class and cylindrical-fibre-class are specified, and some remarkable shapes of these classes are commented.  相似文献   

8.
When studying the regular polygonal inclusion in 1997, Nozaki and Taya discovered numerically some remarkable properties of Eshelby tensor: Eshelby tensor at the center and the averaged Eshelby tensor over the inclusion domain are equal to that of a circular inclusion and independent of the orientation of the inclusion. Then Kawashita and Nozaki justified the properties mathematically. In the present paper, some other properties of a regular polygonal inclusion are discovered. We find that for an N-fold regular polygonal inclusion except for a square, the arithmetic mean of Eshelby tensors at N rotational symmetrical points in the inclusion is also equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Furthermore, in two corollaries, we point out that Eshelby tensor at the center, the averaged Eshelby tensor over the inclusion domain, and the line integral average of Eshelby tensors along any concentric circle of the inclusion are all identical with the arithmetic mean.The project supported by the National Natural Science Foundation of China (10172003 and 10372003) The English text was polished by Keren Wang.  相似文献   

9.
In many dynamic applications of theoretical physics, for instance in electrodynamics, elastodynamics, and materials sciences (dynamic variant of Eshelby’s inclusion and inhomogeneity problems) the solution of the inhomogeneous Helmholtz equation (‘dynamic’ or Helmholtz potential) plays a crucial role. In materials sciences from such a solution the dynamical fields due to harmonically transforming eigenfields can be constructed. In contrast to the static Eshelby’s inclusion problem (Eshelby, 1957), due to its mathematical complexity, the dynamic variant of the problem is comparably little touched. Only for a restricted set of cases, namely for ellipsoidal, spheroidal and continuous fiber-inclusions, analytical approaches exist. For ellipsoidal shells we derive a 1D integral representation of the Helmholtz potential which is useful to be extended to inhomogeneous ellipsoidal source regions. We determine the dynamic potential and dynamic variant of the Eshelby tensor for arbitrary source densities and distributions by employing a numerical technique based on Gauss quadrature. We study a series of examples of Eshelby problems which are of interest for applications in materials sciences, such as for instance cubic and prismatic inclusions. The method is especially useful to be applied in self-consistent methods (e.g. the effective field method) if one looks for the effective dynamic characteristics of the material containing a random set of inclusions.  相似文献   

10.
The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material is analytically solved using a simplified strain gradient elasticity theory (SSGET) that contains a material length scale parameter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a general analytical form in terms of three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on classical elasticity. These potential functions, as volume integrals over the polyhedral inclusion, are evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with each duplex and the associated local coordinate system constructed using a procedure similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977–1995). Each of the three volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed to a contour (line) integral based on Stokes' theorem and using an inverse approach different from those adopted in the existing studies based on classical elasticity. The newly derived SSGET-based Eshelby tensor is separated into a classical part and a gradient part. The former contains Poisson's ratio only, while the latter includes the material length scale parameter additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-based Eshelby tensor reduces to that based on classical elasticity when the strain gradient effect is not considered. For homogenization applications, the volume average of the new Eshelby tensor over the polyhedral inclusion is also provided in a general form. To illustrate the newly obtained Eshelby tensor and its volume average, three types of polyhedral inclusions – cubic, octahedral and tetrakaidecahedral – are quantitatively studied by directly using the general formulas derived. The numerical results show that the components of the SSGET-based Eshelby tensor for each of the three inclusion shapes vary with both the position and the inclusion size, while their counterparts based on classical elasticity only change with the position. It is found that when the inclusion is small, the contribution of the gradient part is significantly large and should not be neglected. It is also observed that the components of the averaged Eshelby tensor based on the SSGET change with the inclusion size: the smaller the inclusion, the smaller the components. When the inclusion size becomes sufficiently large, these components are seen to approach (from below) the values of their classical elasticity-based counterparts, which are constants independent of the inclusion size.  相似文献   

11.
A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.  相似文献   

12.
The present paper solves the problem of sliding ellipsoidal/elliptical inclusion with the Eshelby property. Results show that the sliding ellipsoidal/elliptical inclusions can have uniform eigenstresses if the prescribed uniform eigenstrains fulfill certain prerequisites. Solutions and prerequisites are obtained for ellipsoidal and elliptical inclusions, respectively. It is shown that the eligible uniform eigenstrains inducing uniform eigenstresses can be shear or non-shear eigenstrains, depending on the geometric shape and the material constants of the inclusion. The study indicates that inclusions of degenerated form, like spheroids, spheres and circles, may also maintain uniform eigenstresses. At last, the corresponding discussion for the inhomogeneous sliding inclusion problem with both eigenstrain and remote loading is also given.  相似文献   

13.
IntroductionWiththedevelopmentofinformationindustryandtheapearanceofsmartmaterialsandsmartstructures,itbecomesmoreandmoreimpo...  相似文献   

14.
A solution for the finite-domain Eshelby-type inclusion problem of a finite elastic body containing a plane strain inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). The formulation is facilitated by an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET and suitable for plane strain problems. The disturbed displacement field is obtained in terms of the SSGET-based Green’s function for an infinite plane strain elastic body, which differs from that in earlier studies using the three-dimensional Green’s function. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is suppressed. The problem of a cylindrical inclusion embedded concentrically in a finite plane strain cylindrical elastic matrix of an enhanced continuum is analytically solved for the first time by applying the general solution, with the Eshelby tensor and its average over the circular cross section of the inclusion obtained in closed forms. This Eshelby tensor, being dependent on the position, inclusion size, matrix size, and a material length scale parameter, captures the inclusion size and boundary effects, unlike existing ones. It reduces to the classical elasticity-based Eshelby tensor for the cylindrical inclusion in an infinite matrix if both the strain gradient and boundary effects are not considered. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing with the increase of the inclusion size, and the boundary effect is vanishing as the inclusion volume fraction becomes sufficiently low.  相似文献   

15.
The stress field due to a half-plane inhomogeneity with plane eigenstrain is obtained by a limiting procedure from the one of a circular Eshelby inhomogeneity/inclusion. This field, which requires tractions to be applied at infinity to be sustained, has minimum strain energy versus any other superposed homogeneous one, and is the Eshelby solution inside plus the Hill jump conditions. By superposition, the stresses due to an infinite strip (Eshelby property domain) inhomogeneity with eigenstrain are obtained, and, by superposition periodic strips or laminates can be obtained. By cancelling the stresses on a free-surface, strips of inclusions meeting a free surface are solved. They exhibit tensile stresses under the free surface, and logarithmic singularities in the tensile stress at the vertex, which may initiate cracking. The Eshelby self-forces on the boundary of circular and half-plane inhomogeneities are computed.  相似文献   

16.
Eshelby tensors for an ellipsoidal inclusion in a microstretch material are derived in analytical form, involving only one-dimensional integral. As micropolar Eshelby tensor, the microstretch Eshelby tensors are not uniform inside of the ellipsoidal inclusion. However, different from micropolar Eshelby tensor, it is found that when the size of inclusion is large compared to the characteristic length of microstretch material, the microstretch Eshelby tensor cannot be reduced to the corresponding classical one. The reason for this is analyzed in details. It is found that under a pure hydrostatic loading, the bulk modulus of a microstretch material is not the same as the one in the corresponding classical material. A modified bulk modulus for the microstretch material is proposed, the microstretch Eshelby tensor is shown to be reduced to the modified classical Eshelby tensor at large size limit of inclusion. The fully analytical expressions of microstretch Eshelby tensors for a cylindrical inclusion are also derived.  相似文献   

17.
We examine the boundary-due components in the mean modified Green operator integral (Green operator for short) of an inclusion pattern in distant-contact and contact-connection transitions. The Direct (RT) and inverse (IRT) Radon Transforms, which allow specification of the different contributions to the mean Green operator of the pattern in simple geometrical terms, are used. The already well-documented case of axially symmetric alignments of equidistant identical oblate spheroids, in an infinite matrix of isotropic (elastic-like or dielectric-like) properties is treated up to infinite alignments and for any aspect ratio from unity (spheres) to infinitesimal (platelets). Simple closed forms for this mean Green operator and for its different parts are newly obtained. These closed forms allow an easy parametric study of the operator variations in terms of the alignment characteristics from distant to contact situations. From contact to connection of the inclusions, the changes in the Green operator’s contributions are pointed, what provides relevant operator forms for the connected patterns. These results are of interest in problems where phase percolation, connectivity inversions or co-continuity are implied.  相似文献   

18.
In recent papers the finite Eshelby tensors for a concentrically placed spherical inclusion in a finite spherical domain have been computed and applied to numerous micromechanical problems. The present work is the extension of the computation of finite Eshelby tensors to general inclusions that are axisymmetric with respect to enclosing spherical domain. The problem of finding the finite Eshelby tensors is transformed into the integral equation. It is shown in the paper that the integral equation has a unique solution. Existence of the solution is proved by exploiting the symmetry of the problem which induce invariant subspaces of the integral equation. In the particular case for a excentrically placed spherical inclusion the problem is explicitly solved. Using computer algebra the solution is found in a closed form up to the second order.  相似文献   

19.
This paper first presents the Eshelby tensors and stress concentration tensors for a spherical inhomogeneity with a graded shell embedded in an alien infinite matrix. The solution is then specialized to inhomogeneous inclusions in finite spherical domains with fixed displacement or traction-free boundary conditions. The Eshelby tensors in the infinite and finite domains and the stress concentration tensors are especially useful for solving many problems in mechanics and materials science. This is demonstrated on two examples. In the first example, the strain distributions in core-shell nanoparticles with eigenstrains induced by lattice mismatches are calculated using the Eshelby tensors in the finite domains. In the second example, the Eshelby and stress concentration tensors in the three-phase configuration are used to formulate the generalized self-consistent prediction of the effective moduli of composites containing spherical particles within the framework of the equivalent inclusion method. The advantage of this micromechanical scheme is that, whilst its predictions are almost identical to the classical generalized self-consistent method and the third-order approximation, the expressions for the effective moduli have simple closed forms.  相似文献   

20.
A simple transformation of the problem of the linear elastic structure is presented. The transformed problem corresponds to a new problem of linear elastic structure with different behaviour, geometry and prescribed forces and displacements. The transformed problem can be easier to study, or can correspond to cases with well-known solutions. By means of this transformation, the problem of ellipsoidal inclusion is transformed into a problem of spherical inclusion, the analytical results known for the Eshelby tensor for an isotropic or transversely isotropic matrix are extended to more general cases of matrix behaviour, and finally, close form expressions of the Green function for an infinite medium are derived for some cases of elastic behaviour without transversal isotropy or orthotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号