首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The permittivity, impedance and AC conductivity studies of NdFeO3 perovskite nanocrystalline material were performed in the frequency range 1 kHz–100 kHz, and temperature range 100 K–320 K. The Sol–gel auto-combustion technique employed to synthesis NdFeO3 perovskite compound. The X-ray diffraction (XRD) pattern of NdFeO3 indicating the single-phase orthorhombic structure. The Scanning electron microscopy (SEM) image shows that the grains homogeneously spread throughout the surface morphology. The average grain size found to be 50 nm. The P–E loop suggests that the NdFeO3 material is ferroelectric in nature. An impedance spectroscopy study suggests that the negative temperature coefficient of resistance (NTCR) behavior of the material. The conductivity spectrum follows the Jonscher's law.  相似文献   

2.
The structural and magnetic properties of the spinel ferrite system Co1+xFe2−2xSnxO4 (x=0.0–1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm−1 and 425 cm−1, which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer.  相似文献   

3.
Cobalt ferrite nano-particles were prepared using the co-precipitation method followed by annealing treatment. The formation of nano-particles with different composition, microstructure and sizes were confirmed by X-ray diffraction, Raman, thermogravimetric-differential thermal analysis and transmission electron microscope. The magnetic hysteresis loops measured at room temperature revealed smaller effective magnetic anisotropy constant, coercivity and remanence ratio for the samples prepared by adding the NaOH solutions into the mixed solutions of Co2+ and Fe3+ ions due to the formation of Co3+ ions. A small saturation magnetization and an enhanced coercivity were observed for the nano-particles prepared by adding the mixed solutions of Co2+ and Fe3+ ions into the NaOH solutions, which was related to the formation of outer layers with poor crystallization on the surfaces of the cobalt ferrite nano-crystals. Furthermore, the existence of these outer layers induced the oxidation of Co2+ ions in cobalt ferrite nano-crystals at 200 and 300 °C, and led to a large change on the composition and magnetic properties.  相似文献   

4.
Magnetostriction characteristics of Mn substituted cobalt ferrite, CoFe2?xMnxO4 (0 ≤ x ≤ 0.3), sintered from nanocrystalline powders of average particle size of ~4 nm have been studied. Larger value of magnetostriction at lower magnetic field is achieved after substitution of Mn for Fe. The maximum value of magnetostriction coefficient is not much affected and the slope of the magnetostriction is increased with increasing Mn content. Higher maximum value of magnetostriction coefficient (λ) of 234 ppm comparable to that of the unsubstituted composition with larger strain derivative (/dH) is obtained for x = 0.2 in CoFe2?xMnxO4. The magnetostriction coefficient is increased to 262 ppm with further enhancement in the strain derivative after annealing the sintered compact at 300 °C in a magnetic field of 400 kA/m for 30 min.  相似文献   

5.
Nanocrystalline octahedra of cobalt ferrite CoFe2O4 powders were synthesized using the organic acid precursor route. The effect of the calcination temperature, Fe3+/Co2+ molar ratio, calcination time and type of organic acid (oxalic, benzoic and tartaric acids) on the formation, crystallite size, microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ molar ratio was varied from 2 to 1.739 while the annealing temperature was controlled from 400 to 1000 °C for various periods from 0.5 to 2 h. The resulting powders were investigated using X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). XRD results indicate that a well crystallized, single spinel cobalt ferrite phase was formed for the precursors annealed at 600-800 °C for 2 h, using oxalic and tartaric acids as precursors for Fe3+/Co2+ molar ratio 1.818. The crystallite size of as-formed powders was in the range of 38.0-92.6 nm at different operating conditions. The calcination temperature and Fe3+/Co2+ molar ratio have a significant effect on the microstructure of the produced cobalt ferrite. The microstructure of the produced powders was found to be octahedra-shaped. The crystalline, pure cobalt ferrite powders with magnetic properties having a maximum saturation magnetization (76.1 emu/g) was achieved for the single phase at Fe3+/Co2+ molar ratio 1.818 and annealing temperature of 600 °C for 2 h using tartaric acid precursor.  相似文献   

6.
《Current Applied Physics》2014,14(1):112-117
Y2O3 doped Y-type composite hexa-ferrites Sr2MnNiFe12O22 + xY2O3 (x = 0 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%) were synthesized successfully using sol-gel auto combustion technique. X-ray diffraction analysis reveals Y-type hexagonal structure with few traces of secondary phases. The decrease in grain size as a function of Yttrium content is attributed to the fact that Yttrium acts as a grain inhibitor. The DC resistivity was observed to increase with increasing Yttrium-contents due to the unavailability of Fe3+ ions at octahedral sites. Activation energy showed that the samples with high resistivity have high value of activation energy and vice versa. Permittivity decreases with the increase of frequency following Maxwell Wagner Model. In addition, the doped samples exhibit very low dielectric constant and low loss tangent in frequency range 20 Hz–1 MHz. The sample x = 5 wt% exhibit the lowest value of dielectric constant. The variation in imaginary part of dielectric constant and loss tangent with frequency show normal dielectric behavior for all the samples. The frequency dependent ac conductivity increases with increase in frequency and decrease with Y2O3 doping. These characteristics may be suitable for their potential applications in electromagnetic attenuation materials and microwave devices. The conductivity mechanism so determined was hopping mechanism. The dc resistivity of the doped ferrites measured in our case is about 1010 Ω-cm that meets the requirement for fabrication of components by electroplating.  相似文献   

7.
Cobalt ferrite nano-particles (CoFe2O4) were synthesized by the co-precipitation method with ammonium hydroxide as an alkaline solution. The reactions were carried out at different temperatures between 20 and 80 °C. The nano-particles have been investigated by magnetic measurements, X-ray powder diffraction and transmission electron microscopy. The average crystallite size of the synthesized samples was between 11 and 45 nm, which was found to be dependent on both pH value of the reaction and annealing temperatures. However, lattice parameters, interplane spacing and grain size were controlled by varying the annealing temperature. Magnetic characterization of the nano-samples were carried out using a vibrating sample magnetometer at room temperature. The saturation magnetization was computed and found to lie between 5 and 67 emu/g depending on the particle size of the studied sample. The coercivity was found to exhibit non-monotonic behavior with the particle size. Such behavior can be accounted for by the combination between surface anisotropy and thermal energies. The ratio of remanence magnetization to saturation magnetization was found to exhibit almost linear dependence on the particle size.  相似文献   

8.
Aluminum substituted cobalt ferrite powders (CoFe2−xAlxO4) with varying composition from 0.0 to 1.0 in the step of 0.2 have been obtained by sol-gel auto combustion technique using citric acid as a fuel. The metal nitrate to fuel ratio was maintained 1:4 throughout the synthesis of CoFe2−xAlxO4. The thermal analysis of as prepared samples is done by TGA technique. The compositional stoichiometry of the prepared samples is confirmed by Energy dispersive X-ray analysis technique. Single phase cubic spinel structure and nano phase structure of the synthesized powders were confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallite size of 16-26 nm was obtained using Scherrer formula. SEM analysis shows the formation of uniform grain growth. The grain size obtained from SEM results is of the order of 30 nm. Maximum specific surface area was observed to be of the order of 52 m2/gm. The highest value of saturation magnetization and coercivity was observed for pure cobalt ferrite sample and it decreases as the aluminum content x increases. A strong co-relation between the saturation magnetization and aluminum content was observed. The decrease in magnetic properties is due to the substitution of aluminum ions in place of Fe3+.  相似文献   

9.
Lead free Ba0.92Ca0.08Ti0.95Zr0.05O3 (BCZT) thin films were deposited on Pt/Ti/SiO2/Si and LaNiO3(LNO)/Pt/Ti/SiO2/Si substrates by a sol–gel processing technique, respectively. The effects of substrate on structure, dielectric and piezoelectric properties were investigated in detail. The BCZT thin films deposited on LNO/Pt/Ti/SiO2/Si substrates exhibit (100) orientation, larger grain size and higher dielectric tunability (64%). The BCZT thin films deposited on Pt/Ti/SiO2/Si exhibit (110) orientation, higher Curie temperature (75 °C), better piezoelectric property (d33 of 50 pm/V) and lower dielectric loss (0.02). The differences in dielectric and piezoelectric properties in the two kinds of oriented BCZT films should be attributed to the difference of structure, in-plane stress and polarization rotation in orientation engineered BCZT films.  相似文献   

10.
Functionalized multiwall carbon nanotubes (MWCNT-COOH) were decorated with crystalline cobalt ferrite nanoparticles (CoFe2O4 NPs) by co-precipitation reaction to form MWCNT-COOH/CoFe2O4 hybrid. The hybrid was characterized by X-ray diffraction analysis, transmission electron microscopy (TEM), Fourier transfom infrared spectroscopy and vibrating sample magnetometry. The results confirmed that MWCNTs and CoFe2O4 NPs coexisted in the hybrid. The TEM results showed a thick layer of CoFe2O4 was intimately connected to the surface of MWCNTs. The saturation magnetization value of the hybrid was 11.5 emu/g. There has been a high frequency fluctuation in conductivity, however, above all dc conductivity changes and resulting activation energy is calculated from the Arrhenius plots. It is found to vary with the temperature regions. This can be attributed to the existence of a conventional temperature independent tunneling conduction mechanism, which can be also explained that the metallic conduction is a dominant mechanism around room temperature. The ac conductivity of MWCNT-COOH/CoFe2O4 hybrid might also be a consequence of the predictions of the universal dynamic response and the ‘n’ power exponents could be determined with lower concentration of the addition in the hybrids.  相似文献   

11.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

12.
Cu substituted Ni-Li spinel ferrites were prepared by a conventional sol-gel auto-combustion method. The structure, surface morphology, dielectric and magnetic properties were investigated by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, impedance spectroscopy and vibrating sample magnetometer, respectively. X-ray diffraction studies reveal the single phase spinel structure of the ferrites and the crystallite size varies from 23 to 35 nm. Incorporation of Cu in the Ni-Li ferrites increases the grain size. The dielectric parameters such as ε´, ε′′, loss tan δ and ac conductivity (σac) have been measured for the annealed samples in the temperature range from 35 to 200 °C and over the frequency range from 101 to 107 Hz. The saturation magnetization and coercivity show a dependence on the composition and microstructure. The values of saturation magnetization vary from 25.6 to 33.6 emu/g with increase in x for samples annealed at 600 °C. The values of the coercivity increase from 170 to 203 Oe with increase in x.  相似文献   

13.
《Current Applied Physics》2020,20(6):739-745
The effect of oxygen deficiency and oxygen excess on the magnetic and electrical transport properties of La0.67Sr0.33MnO3 has been investigated. The thermal and isothermal magnetization measurement results show that the Curie temperature and saturation magnetization of oxygen deficient sample (defined as A) are higher than those oxygen excess sample (defined as B). The electrical resistivity of A is lower than that of B in studied temperature range. The magnetoresistance (MR) of B is larger than that of A in the temperature range from 280 to 360 K, which agrees with the magnetic field needed full spin polarization at room temperature. The colossal MR (CMR) around transition temperature from ferromagnetic metal to paramagnetic insulator (TMI) for A is larger than that for B, which arises from assistance of stronger lattice deformation for A.  相似文献   

14.
Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 °C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer.  相似文献   

15.
In the present work Mn doped YCrO3 nanoparticles are synthesized by the sol–gel method. Samples have been characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis absorption spectroscopy. The optical band gap of Mn doped YCrO3 nanoparticles increases with increase of doping concentration. The dc resistivity of the prepared samples decreases with increasing temperature. The variation of ac conductivity with frequency has been explained by the Correlated Barrier Hoping (CBH) conduction mechanism. Dielectric permittivity of the samples was studied and it follows the power law ε/(f)∝Tn, where the temperature exponent n is found to be frequency dependent. The dielectric properties of the samples have been discussed in terms of electric modulus vector. Both activation energies due to dc resistance and dielectric response have been measured for the different samples and it is observed that it increases with the Mn content.  相似文献   

16.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

17.
Nanoparticles of Mn0.5Zn0.5−xCdxFe2O4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized by a chemical co-precipitation method. The lattice constant increases with increasing Cd content. X-ray calculations indicate that there is deviation in the cation distribution in the nanostructured spinel ferrite. The dielectric constant and dielectric loss decrease for the samples with Cd content up to x=0.2. However the dielectric constant rises for x=0.3. This is due to an increase in the hopping process at the octahedral (B sites). The dielectric constant increases with increase in temperature, indicating a thermally activated hopping process. The DC resistivity increases with Cd content up to x=0.2 and decreases for Cd content x=0.3. The maximum magnetization of all the samples decreases with increase in Cd content.  相似文献   

18.
The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol–gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10−3 S cm−1 has been obtained for the sample at higher temperatures.  相似文献   

19.
The temperature dependence of the effective magnetic anisotropy constant K(T) of CoFe2O4 nanoparticles is obtained based on the SQUID magnetometry measurements and Mössbauer spectroscopy. The variation of the blocking temperature TB as a function of particle radius r is first determined by associating the particle size distribution and the anisotropy energy barrier distribution deduced from the hysteresis curve and the magnetization decay curve, respectively. Finally, the magnetic anisotropy constant at each temperature is calculated from the relation between r and TB. The resultant effective magnetic anisotropy constant K(T) decreases markedly with increasing temperature from 1.1×107 J/m3 at 5 K to 0.6×105 J/m3 at 280 K. The attempt time τ0 is also determined to be 6.1×10−12 s which together with the K(T) best explains the temperature dependence of superparamagnetic fraction in Mössbauer spectra.  相似文献   

20.
Fine powders of NiCuZn ferrite with composition Ni(0.7−x)CuxZn0.3Fe2O4 (where x=0, 0.2, 0.4 and 0.6) were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single-phase cubic spinel structure. The grain size was estimated by SEM micrograph which increases with Cu content. Dielectric constant (?) and loss tangent (tan δ) were measured as a function of frequency. The ? and tan δ show a decreasing trend with increase of frequency for all the samples. The DC resistivity was measured as a function of temperature. The temperature-dependent DC resistivity measurements show that the room-temperature DC resistivity of NiCuZn ferrite with x=0.2 is of the order of 109 Ω cm. The AC conductivity (σAC) was studied as a function of frequency. The hysteresis data indicate that the maximum saturation magnetization of 38.66 emu/g is obtained for the composition with x=0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号