首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk polycrystalline Bi85Sb15−xGex (x=0, 0.5, 1, 1.5, 2) composites were prepared by mechanical alloying followed by pressureless sintering. The thermoelectric properties were studied in the temperature range of 77–300 K. The results indicate that increasing the Ge concentration causes the Seebeck coefficient to change sign from negative to positive. Moreover, it is found that the maximum value of the Seebeck coefficient can be precisely controlled with the Ge concentration. The maximum dimensionless figure of merit reaches 0.07 at 140 K. These results suggest that the preparation of p-type Bi–Sb alloys is possible by using the Ge-doping approach.  相似文献   

2.
Polycrystalline (Bi0.6K0.4) (Fe0.6Nb0.4)O3 material has been prepared using a mixed-oxide route at 950 °C. It was shown by XRD that at room temperature structure of the compound is of single-phase with hexagonal symmetry. Some electrical characteristics (impedance, modulus, conductivity etc.) were studied over a wide frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges. The Nyquist plot (i.e., imaginary vs real component of complex impedance) of the material exhibit the existence and magnitude of grain interior and grain boundary contributions in the complex electrical parameters of the material depending on frequency, input energy and temperature. The nature of frequency dependence of ac conductivity follows Joncher׳s power law, and dc conductivity follows the Arrhenius behavior. The appearance of PE hysteresis loop confirms the ferroelectric properties of the material with remnant polarization (2Pr) of 1.027 µC/cm2 and coercive field (2Ec) of 16.633 kV/cm. The material shows very weak ferromagnetism at room temperature with remnant magnetization (2Mr) of 0.035 emu/gm and coercive field (2Hc) of 0.211 kOe.  相似文献   

3.
Bi100−xSbx (x=8-17) alloys were prepared by direct melting of constituent elements, which was followed by quenching and annealing. The synthesis of high-homogeneity alloys was confirmed by X-ray diffraction, differential thermal analyses and electron microprobe analysis. The semiconducting and thermoelectric properties of the samples were investigated by measuring Hall coefficient, electrical resistivity and Seebeck coefficient in the temperature range from 20 to 300 K for both the as-quenched and annealing samples. The properties change gradually with the Sb concentration x, which is attributed to the variation of the energy gap. The Hall mobility was enhanced by annealing, which leads to a small electrical resistivity and a large Seebeck coefficient. Consequently, large values of about 8.5 mW/mK2 for the power factor were obtained in the annealed alloys of x=8,12, and 14.  相似文献   

4.
FeNi alloy nanoparticles with controllable sizes were attached on the multiwalled carbon nanotubes by adjusting the atomic ratio of metal to carbon in the mixed solution of nitrate with Fe:Ni=1:1 (atomic ratio) via wet chemistry. Transmission electron microscopy (TEM) and high-resolution TEM indicated that quasi-spherical FeNi alloy nanoparticles with sizes in the range 12-25 nm are obtained. FeNi alloy composed of major face center cubic (fcc) and minor body center cubic (bcc) structures, which is proved by the X-ray powder diffraction (XRD). Magnetization measured by vibrating sample magnetometer demonstrated that both the coercive force and saturation magnetizations decrease as the size of the FeNi alloy nanoparticles decreased. The chemical method is promising for fabricating FeNi alloy nanoparticles attached on carbon nanotubes for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

5.
The alloys with the general formula of Bi85Sb15−xAgx (x=0, 1, 3, 5, 7) were prepared by mechanical alloying and subsequent pressureless sintering (Bi85Sb15 alloy was used for comparison). Their transport properties involving electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The maximum absolute value of Seebeck coefficient (120 μV/K) was found at 160 K in the alloy Bi85Sb15−xAgx (x=3). The figure-of-merit of alloy Bi85Sb15−xAgx (x=1) reached a maximum value of 2.16×10−3 K−1 at 219 K, which is as large again as that of the reference sample Bi85Sb15.  相似文献   

6.
The influence of chromium and sodium on the nickel oxidation kinetics has been studied as a function of temperature (1373-1673 K) and oxygen activity (10−105 Pa O2), using microthermogravimetric techniques. It has been shown that the oxidation of Ni-Cr and Ni-Na alloys, like that of pure nickel, follows strictly the parabolic rate law being thus diffusion controlled. In agreement with the defect model of Ni1−yO, it has been found that the oxidation rate of the Ni-Cr alloy is higher than that of pure nickel, the reaction rate is pressure independent and the activation energy of this process is lower. This implies that the concentration of double ionized cation vacancies in a Ni1−yO-Cr2O3 solid solution is fixed on a constant level by trivalent chromium ions, substitutionally incorporated into the cation sublattice of this oxide. In the case of the Ni-Na alloy, on the other hand, the oxidation rate is lower than that of pure nickel, the activation energy is higher and the oxidation rate increases more rapidly with oxygen pressure. These results can again be explained in terms of the doping effect, by assuming that univalent sodium ions dissolve substitutionally in the cation sublattice of nickel oxide.  相似文献   

7.
Thermoluminescence properties of barium strontium mixed sulfate have been studied by irradiation with Argon ions. The sample was recrystallized by chemical co-precipitation techniques using H2SO4. The X-ray diffraction study of prepared sample suggests the orthorhombic structure with average grain size of 60 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermally stimulated luminescence (TSL) glow curves of ion irradiated Ba0.12Sr0.88SO4 phosphor exhibit broad peak with maximum intensity at 495 K composed of four overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). Thermoluminescence (TL) glow curves were recorded for each of the ion fluences. A linear increase in intensity of TL glow peaks was found with the increase in ion dose from 59 kGy to 5.9 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution (GCD), different glow curve shape and sample heating rate methods.  相似文献   

8.
Ternary PdMnxFe1−x alloys are known to form a microinhomogeneous random mixture of PdMn and PdFe phases. The unconventional ρ(x) dependence of dc resistivity and singularities in low frequency optical conductivity spectra of alloys are described footing within the effective medium approach. The essential point of the model proposed is the anomalous role of insulating interfaces, whose proliferation at intermediate x gives rise to the observed maximum of resistivity near x?0.8.  相似文献   

9.
Electrical conductivity and thermal degradation studies of promethazine hydrochloride (PH); 2-chlorophenothiazine (CP); diethazine hydrochloride (DH) and trifluoperazine dihydrochloride (TFP) are reported. The activation energies are evaluated based on their electrical conductivity study conducted over the temperature range 30-150 °C. These energies for PH, CP, DH and TFP are found to be 0.86, 1.02, 0.68 and 1.08 eV, respectively. The materials are analyzed for the kinetic parameters like the activation energies for decomposition and the Arrhenious pre-exponential factors in their pyrolysis region using Broido's, Coats-Redfern and Horowitz-Metzger methods. Using these factors and the standard equations thermodynamic parameters such as enthalpy, entropy and free energies are calculated. Thermogravimetric study on these phenothiazine derivatives in air indicated that their stabilities are in the order CP>TFP>PH >DH.  相似文献   

10.
Composite electrolytes in the system [(KCl)0.9:(NaCl)0.1]1−y:(ZrO2)y were prepared and their ionic conductivities were studied. In our previous study on the mixed halide system (KCl)1−x:(NaCl)x, maximum conductivity (∼50 times that of the base KCl matrix) was found when x=0.1. The matrix (KCl)0.9:(NaCl)0.1 was dispersed with different concentration of ZrO2 (powder) for the preparation of composites and their conductivities were determined. The maximum conductivity was developed for the composite having composition y=0.5. The matrices were prepared by melt-quench technique and the dispersion of ZrO2 was carried out in liquid medium. The conductivity measurements of the composites were carried out by impedance spectroscopy technique. The composite [(KCl)0.9:(NaCl)0.1]0.5:(ZrO2)0.5 was characterized by X-ray diffraction (XRD) analysis, differential thermal analysis (DTA), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The conductivity of the composite [(KCl)0.9:(NaCl)0.1]0.5:(ZrO2)0.5 as a function of temperature was also studied. The conductivity increase in the composite could be attributed to enhancement of defect concentration in the space charge region created at the interface between the host halide and the dispersoid.  相似文献   

11.
We report electric and magnetic properties of oxygen deficient Ba5−xLaxNb4−xTixO15−δ phases, which have been prepared by solid-state reaction method followed by a controlled reduction process under hydrogen atmosphere. The extra electrons added by the formation of the oxygen vacancies (δ) introduce localized spins and the magnetic susceptibility can be described by a temperature-independent contribution and a Curie-Weiss term associated to the Ti3+ ion formation. Besides, the experimental resistivity (ρ) data of these four reduced compounds are well described in a wide temperature range with the equation , which suggests the presence of small polarons in the system. Although, all samples present electrical insulating behavior, the electrical resistivity decreases four orders of magnitude for intermediate x values. We interpreted this fact as a consequence of the mix between the localized bands of the Nb and Ti ions, which favors the promotion of carriers due to reduction of the band gap.  相似文献   

12.
Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.  相似文献   

13.
Pb- or Sn-doped Bi88Sb12 alloys were prepared by direct melting, quenching, and annealing. The Bi-Sb alloy phase was predominant in all samples. Pb or Sn atoms were distributed almost uniformly in Bi88Sb12, while some segregation was confirmed at the grain boundaries when Pb or Sn was involved heavily. The thermoelectric properties of these doped materials were investigated by measuring the Hall coefficient, electrical resistivity, and Seebeck coefficient between 20 K and 300 K. The Hall and Seebeck coefficients of Pb- or Sn-doped samples were positive at low temperatures, indicating that the doping element acted as an acceptor. Temperatures resulting in positive Hall and Seebeck coefficients further increased with increasing doping amount and with respect to the annealing process. As a result, a large power factor of 1.2 W/mK2 could be obtained in the 3-at% Sn-doped sample at 220 K, with a large positive Seebeck coefficient.  相似文献   

14.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

15.
A polycrystalline sample, KCa2V5O15, with tungsten bronze structure was prepared by a mixed-oxide method at low temperature (i.e., at 630 °C). A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound was studied by scanning electron microscopy (SEM). Two dielectric anomalies at 131 and 275 °C were observed in the temperature dependency of dielectric response at various frequencies, which may be attributed to the ferroelastic-ferroelectric and ferroelectric-paraelectric transitions, respectively. The nature of variation of the electrical conductivity, and value of activation energy of different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies). The impedance plots showed only bulk contributions, and non-Debye type of relaxation process occurs in the material. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.  相似文献   

16.
The effect of Co, Ni and Zn substitutions for Cu on the phase stability and superconducting properties of (Hg0.7Cr0.3)Sr2CuO4+δ was investigated. X-ray diffraction (XRD) revealed that both Co and Zn are soluble in the (Hg0.7Cr0.3)Sr2CuO4+δ material up to about 5% of the Cu content, whereas the solubility of Ni is extended up to 10%. Electrical resistivity and magnetic susceptibility measurements show that the value of the superconducting critical temperature Tc decreases linearly with the impurity content. The depression of Tc indicates that the suppression of the superconductivity in Co- and Ni-substituted samples is much stronger than that in Zn-substituted ones. The residual resistivity scales linearly with the doping level as expected from the impurity scattering due to disorder. Some possible explanations for the stronger suppression of Tc by the Co and Ni substitution than by Zn substitution are provided.  相似文献   

17.
The samples Mg1+xTixFe2−2xO4 were prepared in a single phase spinel structure as indicated from X-ray analysis. The preference of Mg2+ ions to the octahedral site decreases the ratio of the normal spinel in the investigated ferrite where the Mg2+ increases on the expense of the Fe3+ ions on the same site. The increase in the conductivity was found to be due to thermally activated mobility of charge carriers. The mobility data enhances the use of Verway model of conductivity which depends on the electron exchange between iron ions of different valences located on the same crystallographic sites. The existence of Ti4+ ions on the octahedral site screens the polarization and decreases the conductivity of the samples. Peculiar behavior was obtained for Ti content of 0.7 and 0.8 due to the presence of secondary phases.  相似文献   

18.
The structural and superconducting properties of Bi1.7Pb0.3Sr2Ca2−xYxCu3Oy superconducting samples are investigated by X-ray diffraction (XRD), resistivity and thermoelectric power (TEP) measurements. XRD results reveal that the volume percentage of the 2223 high Tc phase decreases with an increase in Y content. The replacement of the Ca2+ ion by the Y3+ ion does not influence the tetragonal structure of the pure Bi (Pb): 2223 system and the lattice parameters vary with Y content. The results of resistivity indicate that the critical temperatures Tc of the samples decrease monotonically with an increase in Y content. Further, the critical concentration of Y to completely suppress superconductivity in the Y-doped Bi (Pb):2223 system is higher (0.60) than that reported (0.20) for the other rare-earth elements. On the other hand, the values of TEP at room temperature are found to be negative for Y=0.00 and 0.10 samples, and it changed to positive with further increase in Y content. The hole-carrier concentration per Cu ion (P) is deduced by using two different ways: the first in terms of Tc values in the superconducting state and the other in terms of TEP values in the normal state. Interestingly, it is found that the values of P deduced from the formal way are not consistent with the reported parabolic behavior for superconducting systems in the under-doped region, and consequently disagree with the general roles of substitution. However, the vice versa is recorded for the values of P deduced from the latter way. The results are discussed in terms of the possible reasons for the suppression of superconductivity in the considered system.  相似文献   

19.
EuCo2(Si1−xGex)2, x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 samples were synthesised by induction melting followed by annealing at 900 °C and rapid quenching. X-ray powder diffraction and Auger electron spectroscopy studies revealed that solid solutions are formed only for x?0.2 and x?0.7. Magnetic susceptibility investigations for the solid solutions revealed a dominant divalent europium valence state in the germanium-rich samples and a dominant trivalent europium component in the silicon-rich samples. In the germanium-rich samples, a long-range antiferromagnetic ordering was observed. In all samples studied, additional magnetic transitions at various temperatures were detected, which could be attributed to small clusters containing different europium chemical surrounding from that in the predominant phase.  相似文献   

20.
Cu7PSe6 is a mixed conductor exhibiting structural phase transitions above and below room temperature that are accompanied by step-like changes in electrical conductivity. The substitution of S2− for Se2− in Cu7PSe6 significantly enhances electrical conductivity at room temperature compared to that observed for the pure compound. In the case of Cu7P(Se0.80S0.20)6, a nearly temperature-independent electrical conductivity exceeds 1 S/cm with no evidence of any phase transitions throughout the temperature interval 200-400 K. However, the ionic contribution accounts for just 2% of the total electrical conductivity in this solid solution at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号