首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A first-principles density-functional-theory method has been used to reinvestigate the mechanical and dynamical stability of the metallic phase of AlH3 between 65 and 110 GPa. The electronic properties and phonon dynamics as a function of pressure are also explored. We find electron–phonon superconductivity in the cubic Pm-3n structure with critical temperature Tc = 37 K at 70 GPa which decreases rapidly with the increase of pressure. Further unlike a previously calculated Tc-value of 24 K at 110 GPa, we do not find any superconductivity of significance at this pressure which is consistent with experimental observation.  相似文献   

2.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC), whereby charge density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse-spinel phase. The CC transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure the CC-transition temperature increases with pressure, reaching 300 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

3.
We have investigated the magnetic and electronic properties of the antiferromagnetic Kondo lattice YbPtAl using the 170Yb Mössbauer effect at ambient pressure (1.8<T<10 K), electrical resistance (1.8<T<300 K) and X-ray diffraction (T=300 K) techniques at high pressures up to 26 GPa. We find a complex magnetic state in YbPtAl at ambient pressure and an unusual volume-induced change of TN. It is suggested, that the anomalous volume dependence of TN is due to the interplay between frustrated anisotropic exchange interactions and magnetocrystalline anisotropy. The magnetic frustration originates from the topology of the crystal lattice.  相似文献   

4.
The magnetic properties of a Fe2P-type intermetallic compound MnRhAs have been investigated under high pressure up to 8.0 GPa by AC susceptibility measurement. Initially, both the antiferromagnetic (AF(I)) to the canted state magnetic transition temperature Tt and the canted state to another antiferromagnetic one (AF(II)) transition temperature TC increase with compression. At 4.0 GPa, however, Tt decreases abruptly, while the increasing rate of TC becomes larger above this pressure. A pressure-induced magnetic phase transition was seen at around this pressure when Tt and TC are plotted in the pressure–temperature phase diagram. The transition from the antiferromagnetic to the ferromagnetic state observed below 160 K with increasing pressure is not frequently observed.  相似文献   

5.
The temperature and pressure dependences of the Raman spectrum of the transverse-optical mode of cubic boron nitride were calibrated for applications to a Raman spectroscopy pressure sensor in optical cells to about 800 K and 90 GPa. A significant deviation from linearity of the pressure dependence is confirmed at pressures above 20 GPa. At ambient temperature, dv/dP slopes are 3.41(7) and 2.04(7) cm−1/GPa at 0 and 90 GPa, respectively. A polynomial expression is used to fit the pressure–temperature dependence of the Raman line. The pressure dependence does not significantly change with temperature, as determined from experiments conducted up to 800 K. At 0 GPa, the dv/dP slope is 3.46(7) cm−1/GPa at 800 K. At pressures above 90 GPa, the Raman spectrum of the transverse-optical mode cannot be observed because of an overlap of the signals of cubic boron nitride and diamond used as the anvils in the high-pressure cell.  相似文献   

6.
《Journal of Molecular Liquids》2006,123(2-3):139-145
(p, ρ, T) and (ps, ρs, Ts) properties, and apparent molar volumes Vϕ of LiI (aq) at T = 298.15 to 398.15 K, at pressures up to p = 60 MPa were reported, and apparent molar volumes at infinite dilution Vϕ0 have been evaluated. An empirical correlation for density of lithium iodide (aq) with pressure, temperature and molality was derived. The experiments were carried out at molalities m = 0.11053, 0.32532, 0.70013, 1.40459, 2.95059, and 4.88147 mol kg 1 of lithium iodide.  相似文献   

7.
Cylindrical ingots of bulk amorphous Nd70Fe20Al10 with a diameter of 8 mm were prepared by a copper mold casting method. It was proved experimentally with X-ray diffraction, scanning electron microscopy and differential scanning calorimetry that the as-prepared alloy samples consisted mainly of the amorphous phase with a minute amount of nano-crystalline phase. The onset crystallization temperature (Tx) and the melting temperature (Tm) of the samples were 743 and 823 K, respectively, from DSC results. The temperature interval between Tx and Tm, ΔT=TmTx, is 80 K and the resulting ratio of Tx/Tm is 0.90. Both a high Tx/Tm ratio and a small ΔT are considered the reasons for the good glass-forming ability. The Curie temperature (Tc) of these samples was 525 K from magneto-thermal gravimetric analysis. This measured value is higher than the highest Tc among binary Nd–Fe amorphous alloys. Annealing treatments were carried out for the as-cast samples to obtain dual-phase samples with different volume fractions of nano-crystalline phase. Magnetic measurement results indicated that the hard magnetic behavior is weakest for samples with 40% of nano-crystalline phase. The curve of the measured hysteresis loop area versus the volume fraction of nano-crystalline phase concaves upward, which agrees with what we predicated in our previous simulation results.  相似文献   

8.
The dynamics of a two-dimensional vortex system with strong periodic square columnar pins is investigated. For the case vortex number matching pinning number, we find that the vortex liquid is frozen into square lattice via a continuous transition, and the freezing (melting) temperature Tm is the same as the thermal depinning temperature of vortices, which are different from the first-order phase transition at weak pinning. The zero-temperature critical depinning force Fc0 is exactly the same as the maximum pinning force, and the depinning property at T = 0 can be expressed by scaling v  (F ? Fc0)β with the exponent β close to 0.5. The vF curves at temperatures below Tm show that vortices are pinned at small driving force.  相似文献   

9.
The effects of hydrostatic pressure up to 10 kbar on Curie temperature TC, compensation temperature TCOMP and spontaneous magnetization MS of ferrimagnetic GdCo12B6 compound have been studied. Two antiferromagnetically coupled sublattices that are carrying magnetization of typically 0.42 μB/Co atom and 7 μB/Gd cancel out at compensation temperature at about 50 K and magnetic ordering temperature TC=163±2 K. The volume dependence of intrinsic magnetic properties of the GdCo12B6 compound has been determined by studying it under hydrostatic pressure. The observed increase of MS with pressure (dMS/dp=+0.005 μB kbar?1 at 5 K) is attributed predominantly to the pressure induced decrease of Co magnetic moments. The crucial role of Co in this behavior is confirmed by the change of sign of the pressure slope at temperatures above TCOMP and by the fact that the estimated decrease of mCo is also quite comparable with pressure induced decrease of MS in YCo12B6 (dMS/dp=?0.007 μB kbar?1). The decrease of mCo is also responsible for the increase of TCOMP with pressure (dTCOMP/dp=+0.06 K kbar?1). The decrease of TC with pressure (dTC/dp=?0.55 K kbar?1) is comparable to the decrease observed on RCo12B6 compounds with non-magnetic R and can be attributed to the volume dependence of Co–Co exchange interactions. The remarkable role of the hybridization as a consequence of small distances between Co and B atoms could be a background of this rather unexpected volume stability of magnetic properties.  相似文献   

10.
We study the strain effect on the surface melting of Si(1 1 1) flat surfaces using Monte Carlo simulation and the empirical Tersoff–Dodson potential. The in-plane strain effect on the atomic structures and the atomic dynamics were investigated at a fixed temperature of 0.82Tm. Surface melting of Si(1 1 1) was induced by either compressive or tensile strain. As the strength of strain increases beyond the critical strength of about 1.5 and 2.5%, respectively, for compressive and tensile strain, the waiting time for surface melting decreases. In the lateral pair correlation function of the melting layers, only the nearest-neighbor correlation remains. Si atoms in the melting layers has a constant diffusion coefficient irrespective of the sign and strength of applied strain.  相似文献   

11.
Structural, electrical and magnetic measurements of polycrystalline CuCrxVySe4 spinels with x=1.79, 1.64 and 1.49 and y=0.08, 0.22 and 0.45, respectively, are presented. The compounds under study crystallize in regular system of a normal spinel type MgAl2O4 structure with the space group symmetry Fd3m. The chromium spins are coupled ferromagnetically and show both strong long- and short-range magnetic interactions evidenced by the large values of the Curie (TC) and Curie–Weiss (θCW) temperatures, decreasing from TC=407 K and θCW=415 K for y=0.08, via TC=349 K and θCW=367 K for y=0.22 to TC=283 K and θCW=293 K for y=0.45, respectively. In all the studied spinels a change of the electrical conductivity character from the semiconductive into the metallic one above 230 K was observed. A detailed thermoelectric power analysis showed a domination of diffusion thermopower component, maximum of phonon drag component at 230 K, a decrease of impurity component with increasing V content, as well as the weak magnon excitations at 40 K.  相似文献   

12.
First-principle calculations using density-functional theory with linearized augmented plane wave method and projector-augmented method have been performed for the high-pressure MnTiO3 polymorphs and their possible dissociation products. Theoretical results demonstrate that ilmenite-type MnTiO3 transforms into perovskite phase at 27 GPa and 0 K. The lithium niobate phase of MnTiO3 is confirmed to be metastable according to its higher Gibbs free energy compared with that of ilmenite at ambient conditions. In ilmenite and lithium niobate phases, MnO6 octahedra become more distorted while TiO6 octahedra become more regular with increasing pressure. In orthorhombic perovskite phase, the structural distortion deviated from the ideal cubic perovskite is enhanced at higher pressure. Based on the non-spin-polarized calculations, perovskite phase MnTiO3 is predicted to dissociate into Fm3?m-MnO+P21/c-MnTi2O5 at 29 GPa.  相似文献   

13.
While a paper mentioned above being published on line, we have become aware of the high-pressure neutron diffraction study of squaric acid (H2C4O4) by C.L. Bull et al. They developed that neutron diffraction experiments could be performed under quasi-hydrostatic conditions to pressures of up to 18 GPa and showed that the tetragonal phase of H2C4O4 was still observed at 14.5 GPa (above the critical pressure of Pc=0.75 GPa at room temperature) beyond the previous pressure limits of 7 GPa. Taking the high-pressure neutron diffraction results into consideration, modified temperature-pressure phase diagram in the paper stated above is reported.  相似文献   

14.
Temperature and pressure dependence of magnetic properties in the NdMn2−xFexGe2 series of solid solutions (0.1⩽x⩽1.0) are reported. The (P, T) magnetic phase diagrams are determined on the basis of the AC magnetic susceptibility measured in a weak magnetic field. The measurements were carried out under hydrostatic pressure up to 1.5 GPa in the temperature range 80−430 K. The reported data show that in the studied series of solid solutions, a drastic change in magnetic properties takes place in a narrow dilution parameter range (0.4⩽x⩽0.5). While taking into account the magnetic properties, the studied range of Fe content could be divided into four regions. Only in the case of x=0.3 and 0.4, the external pressure significantly influences the magnetic properties of the samples.  相似文献   

15.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T  170 K. With the application of pressure this phase transition is rapidly suppressed and by ~0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.  相似文献   

16.
New solid electrolytes containing acetamide and lithium bioxalato borate (LiBOB) with different molar ratios have been investigated. Their melting points (Tm) are around 42 °C. The ionic conductivities and activation energies vary drastically below and above Tm, indicating a typical feature of phase transition electrolyte. The ionic conductivity of the LiBOB/acetamide electrolyte with a molar ratio of 1:8 is 5 × 10? 8 S cm? 1 at 25 °C but increases to 4 × 10? 3 S cm? 1 at 60 °C. It was found that anode materials, such as graphite and Li4Ti5O12, could not discharge and charge properly in this electrolyte at 60 °C due to the difficulty in forming a stable passivating layer on the anodes. However, a Li/LiFePO4 cell with this electrolyte can be charged properly after heating to 60 °C, but cannot be charged at room temperature. Although the LiBOB/acetamide electrolytes are not suitable for Li-ion batteries due to poor electrode compatibility, the current results indicate that a solid electrolyte with a slightly higher phase transition temperature than room temperature may find potential application in stationary battery for energy storage where the electrolyte is at high conductive liquid state at elevated temperature and low conductive solid state at low temperature. The interaction between acetamide and LiBOB in the electrolyte is also studied by Raman and FTIR spectroscopy.  相似文献   

17.
A review of high pressure studies on Fe-pnictide superconductors is given. The pressure effects on the magnetic and superconducting transitions are discussed for different classes of doped and undoped FeAs-compounds: ROFeAs (R = rare-earth), AeFe2As2 (Ae = Ca, Sr, Ba), and AFeAs (A = Li, Na). Pressure tends to decrease the magnetic transition temperature in the undoped or only slightly doped compounds. The superconducting Tc increases with low pressure for underdoped FeAs-pnictides, remains approximately constant for optimal doping, and decreases linearly in the overdoped range. The undoped LaOFeAs and AeFe2As2 become superconducting under pressure although non-hydrostatic pressure condition seems to play a role in CaFe2As2. The superconductivity in the (undoped) AFeAs is explained as a chemical pressure effect due to the volume contraction caused by the small ionic size of the A-elements. The binary FeSe shows the largest pressure coefficient of Tc in the Se-deficient superconducting phase.  相似文献   

18.
Magnetic properties and magnetocaloric effects (MCEs) of the intermetallic Ho3Al2 compound are investigated by magnetization and heat capacity measurements. Two successive magnetic transitions, a spin-reorientation (SR) transition at TSR=31 K followed by a ferromagnetic (FM) to paramagnetic (PM) transition at TC=40 K, are observed. Both magnetic transitions contribute to the MCE and result in a large magnetic entropy change (ΔSM) in a wide temperature range. The maximum values of ?ΔSM and adiabatic temperature change (ΔTad) reach 18.7 J/kg K and 4.8 K for the field changes of 0–5 T, respectively. In particular, a giant value of refrigerant capacity (RC) is estimated to be 704 J/kg for a field change of 5 T, which is much higher than those of many potential refrigerant materials with similar transition temperatures.  相似文献   

19.
Although BPSCCO superconducting regime has very low stability under high oxygen pressures as reported in the literature, we managed to synthesize relatively pure 2212-BPSCCO and their Nb-doped samples having general formula Bi1−xNbxPbSr2CaCu2O8, where x = 0.1, 0.2, 0.4 and 0.6 mole, respectively, at moderate oxygen pressure (∼30 bar). The superconducting measurements proved that the best recorded Tc  69 K was for the undoped 2212-BPSCCO, while the lowest Tc  58 K was recorded for the maximum doped sample x = 0.6 mole indicating that superconductive transition temperatures Tcs decrease regularly with increasing Nb-dopant concentration from x = 0.1 to 0.6, respectively. The lattice parameter c exhibited a slight length compression as Nb-dopant ratio increases from 0.1 to 0.6 mole, respectively. From SE-microscopic analysis, the average grain size was estimated and found in between 0.44 and 1.6 μm which is considered relatively high to that reported in the literature. The measured Jc’s values were found to be enhanced remarkably as Nb-dopant concentration increases.  相似文献   

20.
Cavitation holds the promise of a new and exciting approach to fabricate both top down and bottom up nanostructures. Cavitation bubbles are created when a liquid boils under less than atmospheric pressure. The collapse process occurs supersonically and generates a host of physical and chemical effects. We have made an attempt to fabricate natural cellulose material using hydrodynamic as well as acoustic cavitation. The cellulose material having initial size of 63 micron was used for the experiments. 1% (w/v) slurry of cellulose sample was circulated through the hydrodynamic cavitation device or devices (orifice) for 6 h. The average velocity of the fluid through the device was 10.81 m/s while average pressure applied was 7.8 kg/cm2. Cavitation number was found to be 2.61. The average particle size obtained after treatment was 1.36 micron. This hydrodynamically processed sample was sonicated for 1 h 50 min. The average size of ultrasonically processed particles was found to be 301 nm. Further, the cellulose particles were characterized with X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to see the effect of cavitation on crystallinity (Xc) as well as on melting temperature (Tm). Cellulose structures consist of amorphous as well as crystalline regions. The initial raw sample was 86.56% crystalline but due to the effect of cavitation, the crystallinity reduced to 37.76%. Also the melting temperature (Tm) was found to be reduced from 101.78 °C of the original to 60.13 °C of the processed sample. SEM images for the cellulose (processed and unprocessed) shows the status and fiber–fiber alignment and its orientation with each other. Finally cavitation has proved to be very efficient tool for reduction in size from millimeter to nano scale for highly crystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号