首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
This paper deals with electrostatically actuated carbon nanotube (CNT) cantilever over a parallel ground plate. Three forces act on the CNTs cantilever, namely electrostatic, van der Waals, and damping. The van der Waals force is significant for values of 50 nm or less of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNTs electrostatic actuation is given by AC voltage, the CNT undergoes nonlinear parametric dynamics. The methods of multiple scales and reduced order model (ROM) are used to investigate the system under soft AC near half natural frequency of the CNT and weak nonlinearities. The frequency–amplitude response and damping, voltage, and van der Waals effects on the response are reported. It is showed that only five terms ROM predicts and accurately predicts the pull-in instability and the saddle-node bifurcation, respectively.  相似文献   

2.
Double-sided electromechanical nano-bridges can potentially be used as angular speed sensors and accelerometers in rotary systems such as turbine blades and vacuum pumps. In such applications, the influences of the centrifugal force and rarefied flow should be considered in the analysis. In the present study, the non-linear dynamic pull-in instability of a double-sided nano-bridge is investigated incorporating the effects of angular velocity and rarefied gas damping. The non-linear governing equation of the nanostructure is derived using Euler-beam model and Hamilton׳s principle including the dispersion forces. The strain gradient elasticity theory is used for modeling the size-dependent behavior of the system. The reduced order method is also implemented to discretize and solve the partial differential equation of motion. The influences of damping, centrifugal force, length scale parameters, van der Waals force and Casimir attraction on the dynamic pull-in voltage are studied. It is found that the dispersion and centrifugal forces decrease the pull-in voltage of a nano-bridge. Dynamic response of the nano-bridge is investigated by plotting time history and phase portrait of the system. The validity of the proposed method is confirmed by comparing the results from the present study with the experimental and numerical results reported in the literature.  相似文献   

3.
Mohamed A. Attia 《Meccanica》2017,52(10):2391-2420
This study investigates the size-dependent quasistatic response of a nonlinear viscoelastic microelectromechanical system (MEMS) under an electric actuation. To have this problem in view, the deformable electrode of the MEMS is modelled using cantilever and doubly-clamped viscoelastic microbeams. The modified couple stress theory in conjunction with Bernoulli–Euler beam theory are used for mathematical modeling of the size-dependent instability of microsystems in the framework of linear viscoelastic theory. Simultaneous effect of electrostatic actuation including fringing field, residual stress, mid-plane stretching and Casimir and van der Waals intermolecular forces are considered in the theoretical model. A single element of the standard linear solid element is used to simulate the viscoelastic behavior. Based on the extended Hamilton’s variational principle, the nonlinear governing integro-differential equation and boundary conditions are derived. Thereafter, a new generalized differential-integral quadrature solution for the nonlinear quasistatic response of electrically actuated viscoelastic micro/nanobeams under two different boundary conditions; doubly-clamped microbridge and clamped-free microcantilever. The developed model is verified and a good agreement is obtained. Finally, a comprehensive study is conducted to investigate the effects of various parameters such as material relaxation time, durable modulus, material length scale parameter, Casimir force, van der Waals force, initial gap and beam length on the pull-in response of viscoelastic microbridges and microcantilevers in the framework of viscoelasticity.  相似文献   

4.
In this paper, the dynamic stability of single- and double-walled carbon nanotubes (SWCNT and DWCNT) under dynamic axial loading is investigated using the continuum mechanics model and the minimum total energy method. The natural frequencies of the SWCNT and the critical dynamic axial load of the SWCNT and DWCNT are obtained using the Rayleigh-Ritz method. The effects of the elastic medium and the van der Waals forces between the two layers in the DWCNT are taken into account using the Winkler model and Lennard-Jones theory, respectively. The effect of the small length scale is also considered using the Eringen Model. The critical dynamic axial load is increased by inserting an inner carbon nanotube (CNT) into an isolated CNT embedded in an elastic medium.  相似文献   

5.
The deformation of a single wall carbon nanotube (SWCNT) interacting with a curved bundle of nanotubes is analyzed. The SWCNT is modeled as a straight elastic inextensible beam based on small deformation. The bundle of nanotubes is assumed rigid and the interaction is due to the van der Waals forces. An analytical solution is obtained using a bilinear approximation to the van der Waals forces. The analytical results are in good agreement with the results of two numerical methods. The results indicate that the SWCNT remains near the curved bundle provided that its curvature is below a critical value. For curvatures above this critical value the SWCNT breaks contact with the curved bundle and nearly returns to its straight position. A parameter study shows that the critical curvature depends on the stiffness of the SWCNT and the absolute minimum energy associated with the van der Waals forces but it is independent of the SWCNT's length in general. An analytical estimate of the critical curvature is developed. The results of this study may be applicable to composites of nanotubes where separation phenomena are suspected to occur.  相似文献   

6.
In this work the voltage response of primary resonance of electrostatically actuated single wall carbon nano tubes (SWCNT) cantilevers over a parallel ground plate is investigated. Three forces act on the SWCNT cantilever, namely electrostatic, van der Waals and damping. While the damping is linear, the electrostatic and van der Waals forces are nonlinear. Moreover, the electrostatic force is also parametric since it is given by AC voltage. Under these forces the dynamics of the SWCNT is nonlinear parametric. The van der Waals force is significant for values less than 50 nm of the gap between the SWCNT and the ground substrate. Reduced order model method (ROM) is used to investigate the system under soft excitation and weak nonlinearities. The voltage-amplitude response and influences of parameters are reported for primary resonance (AC near half natural frequency).  相似文献   

7.
An analytical method is proposed to accurately estimate the pull-in parameters of a micro- or nanocantilever beam elastically constrained by a rotational spring at one end. The system is actuated by electrostatic force and subject to Casimir or van der Waals forces according to the beam size. The deflection of the beam is described by a fourth-order nonlinear boundary value problem, or equivalently in terms of a nonlinear integral equation. New a priori analytical estimates on the solution from both sides are first derived and then lower and upper bounds for the pull-in parameters are obtained, with no need of solving the nonlinear boundary value problem. The lower and upper bounds turn out to be very close each other and in excellent agreement with the numerical results provided by the shooting method. The approach also provides accurate predictions for the pull-in parameters of a freestanding nanoactuator.  相似文献   

8.
A multiple-elastic beam model based on Euler-Bernoulli-beam theory is presented to investigate the nonlinear dynamic instability of double-walled nanotubes. Taking the geometric nonlinearity of structure deformation, the effects of van der Waals forces as well as the non- coaxial curvature of each nested tube into account, the nonlinear parametric vibration governing equations are derived. Numerical results indicate that the double-walled nanotube (DWNT) can be considered as a single column when the van der Waals forces are sufficiently strong. The stiffness of medium could substantially reduce the area of the nonlinear dynamic instability region, in particular, the geometric nonlinearity can be out of account when the stiffness is large enough. The area of the principal nonlinear instability region and its shifting distance aroused by the nonlinearity both decrease with the increment of the aspect ratio of the nanotubes.  相似文献   

9.
An electromechanical integrated electrostatic harmonic actuator is promising for the miniaturization of electromechanical devices. As the dimensions of the actuator decrease, the effects of the van der Waals force become obvious. In this study, by considering the nonlinearity of electrostatic and van der Waals forces, nonlinear vibration equations of the flexible ring of an electrostatic harmonic actuator are deduced. Using these equations, the nonlinear free vibration and nonlinear forced response of the actuator are investigated. The effects of the van der Waals force on the nonlinear vibration of the flexible ring are analyzed. Results show that these effects of the van der Waals force are relatively obvious under some conditions and should be considered.  相似文献   

10.
The capability of carbon nanotubes (CNTs) in efficient transporting of drug molecules into the biological cells has been the focus of attention of various scientific disciplines during the past decade. From applied mechanics points of view, translocation of a nanoparticle inside the pore of a CNT would result in vibrations. The true understanding of the interactive forces between the moving nanoparticle and the inner surface of the CNT is a vital step in factual realization of such vibrations. Herein, by employing the nonlocal Rayleigh beam theory, nonlinear vibrations of single-walled carbon nanotubes (SWCNTs) as nanoparticle delivery nanodevices are studied. The existing van der Waals interactional forces between the constitutive atoms of the nanoparticle and those of the SWCNT, frictional force, and both longitudinal and transverse inertial effects of the moving nanoparticle are taken into account in the proposed model. The nonlinear-nonlocal governing equations are explicitly obtained and then numerically solved using Galerkin method and a finite difference scheme in the space and time domains, respectively. The roles of the velocity and mass weight of the nanoparticle, small-scale effect, slenderness ratio, and vdW force on the maximum longitudinal and transverse displacements as well as the maximum nonlocal axial force and bending moment within the SWCNT are examined. In general, the obtained results reveal that the nonlinear analysis should be performed when the nanotube structure is traversed by a moving nanoparticle with high levels of the mass weight and velocity.  相似文献   

11.
The pull-in instability of a cantilever nano-actuator model incorporating the effects of the surface, the fringing field, and the Casimir attraction force is investigated. A new quartic polynomial is proposed as the shape function of the beam during the deflection, satisfying all of the four boundary values. The Gaussian quadrature rule is used to treat the involved integrations, and the design parameters are preserved in the evaluated formulas. The analytic expressions are derived for the tip deflection and pull-in parameters of the cantilever beam. The micro-electromechanical system (MEMS) cantilever actuators and freestanding nanoactuators are considered as two special cases. It is proved that the proposed method is convenient for the analyses of the effects of the surface, the Casimir force, and the fringing field on the pull-in parameters.  相似文献   

12.
In this paper, carbon nanotube-based nanoelectromechanical systems (NEMS) are nanofabricated and tested. In-situ scanning electron microscopy measurements of the deflection of the cantilever under electrostatic actuation are reported. In particular, a cantilever nanotube suspended over an electrode (nanoswitch), or two symmetric cantilever nanotubes (nanotweezers), from which a differential in electrical potential is imposed, are studied. The finite deformation regime investigated here is the first of its kind. An analytical model based on the energy method in both small deformation and finite kinematics (large deformation) regimes is used to interpret the measurements. The theory overcomes limitations of prior analysis reported in the literature towards the prediction of the structural behavior of NEMS. Some of the simplifying hypotheses have been removed. Furthermore, the theory takes into account the cylindrical shape of the deflected nanotube in the evaluation of its electrical capacitance, the influence of the van der Waals forces as well as finite kinematics. In addition, tip charge concentration and a quantum correction of the electrical capacitance are also considered. The energy-based method is used to predict the structural behavior and instability of the nanotube, corresponding to the on/off states of the nanoswitch, or to the open/close states of the nanotweezers—at the so-called pull-in voltage. Accuracy of the derived formulas is assessed by comparison of the theoretical prediction and experimental data in both small deformation and finite kinematics regimes. The results reported in this work are particularly useful in the characterization of the electromechanical properties of nanotubes as well as in the optimal design of nanotube-based NEMS devices.  相似文献   

13.
In this paper,the effect of van der Waals(vdW)force on the pull-in behavior of electrostatically actuatednano/micromirrors is investigated.First,the minimum potential energy principle is utilized to find the equation governing the static behavior of nano/micromirror under electrostatic and vdW forces.Then,the stability of static equilibrium points is analyzed using the energy method.It is foundthat when there exist two equilibrium points,the smaller oneis stable and the larger one is unstable.The effects of different design parameters on the mirror’s pull-in angle andpull-in voltage are studied and it is found that vdW forcecan considerably reduce the stability limit of the mirror.Atthe end,the nonlinear equilibrium equation is solved numerically and analytically using homotopy perturbation method(HPM).It is observed that a sixth order perturbation approximation can precisely model the mirror’s behavior.The results of this paper can be used for stable operation design andsafe fabrication of torsional nano/micro actuators.  相似文献   

14.
The influence of van der Waals (vdW) force on the stability of electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.  相似文献   

15.
In this study, the static pull-in instability of nanocantilever beams immersed in a liquid electrolyte is theoretically investigated. In modeling the nanocantilever beam, the effects of van der Waals forces, elastic boundary condition and size dependency are considered. The modified couple stress theory, containing material length scale parameter, is used to interpret the size effect which appears in micro/nanoscale structures. The modified Adomian decomposition (MAD) method is used to gain an approximate analytical expression for the critical pull-in parameters which are essential for the design of micro/nanoactuators. The results show that the beam can deflect upward or downward, based on the values of the non-dimensional parameters. It is found that the size effect greatly influences the beam deflection and is more noticeable for small thicknesses. Neglecting size effect overestimates the deflection of the nanobeam. The findings reveal that the increase of ion concentration increases the pull-in voltage but decreases the pull-in deflection. Furthermore, an increase in ion concentration increases the influence of size-dependent effect on pull-in voltage.  相似文献   

16.
IntroductionThediscoveryofthefirstcarbonnanotubes[1]hasattractedwideattentionandstimulatedextensivestudies[2 - 5 ].Thestudiesshowedthatthecarbonnanotubesexhibitsuperiormechanical,electronicandchemicalproperties.Onthemechanicalbehavior,thecarbonnanotubespossessexceptionallyhighstrength ,stiffnessandelasticmodulus.Theestimatemodulusofthecarbonnanotubemayreachashighas 1TPa.Itisthelargestofallknownmaterials.Thestrengthorstiffnessishigherthananyknownfiber[3].Thecarbonnanotubeareusedascompositemat…  相似文献   

17.
We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.  相似文献   

18.
A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures sizedependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton’s principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pullin parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nanoscale phenomena on the pull-in threshold of the nano-bridges.  相似文献   

19.
The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer. In this paper, a systematic method for deriving dynamic equation of microcantilevers under electrostatic force is presented. This model covers the behavior of the microcantilevers before and after the pull-in including the effects of van der Waals force, squeeze-film damping, and contact bounce. First, a polynomial approximate shape function with a time-dependent variable for each configuration is defined. Using Hamilton’s principle, dynamic equations of microcantilever in all configurations have been derived. Comparison between modeling results and previous experimental data that have been used for validation of the model shows a good agreement.  相似文献   

20.
The peridynamic theory of continuum mechanics allows damage, fracture, and long-range forces to be treated as natural components of the deformation of a material. In this paper, the peridynamic approach is applied to small thickness two- and one-dimensional structures. For membranes, a constitutive model is described appropriate for rubbery sheets that can form cracks. This model is used to perform numerical simulations of the stretching and dynamic tearing of membranes. A similar approach is applied to one-dimensional string like structures that undergrow stretching, bending, and failure. Long-range forces similar to van der Waals interactions at the nanoscale influence the equilibrium configurations of these structures, how they deform, and possibly self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号