首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a mathematical model for the two-phase flow of a mono-component fluid in an undeformable porous medium. The main practical application is the problem of gas extraction in a geothermal reservoir for which the model can be used for predicting the extinction time of a specific phase in the reservoir. The system is modeled assuming that temperature is not evolving and that the driving mechanism in the case of co-existence of the two phases is capillarity. We also assume that the fluid can be found in liquid and gaseous phase and that there can be regions where this two phases co-exist. The various phases are separated by evolving boundaries (the mathematical formulation turns out to be a free boundary problem) which are determined imposing mass balance relations. We give an integral formulation for the so-called overall density, which is the sum of the densities of each phase weighted by saturation. Finally we present some numerical simulations to investigate the dependence of the solution on the physical parameters and on the boundary conditions involved in the system.  相似文献   

2.
A fuel pollutant migrating in a water flow throughout a porous medium is distributed between the moving (continuous) and residual (discontinuous) phases. Usually, there is an equilibrium condition between these phases. In this study, the migration of a fuel slug confied within free boundaries moving in the porous medium is considered. This type of fuel migration pertains to circumstances in which convective fuel transport dominates fuel dispersion when fuel saturation approaches zero. A one-dimensional self-similar model is developed, describing the movement of fuel saturation fronts in a porous medium against and with the water flow direction. Several analytical solutions are found revealing the effects of the pore size, fuel viscosity, fuel mass, and the capillary number on the fuel migration in the porous medium.  相似文献   

3.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In the present paper, multiphase flow dynamics in a porous medium are analyzed by employing the lattice-Boltzmann modeling approach. A two-dimensional formulation of a lattice-Boltzmann model, using a D2Q9 scheme, is used. Results of the FlowLab code simulation for single phase flow in porous media and for two-phase flow in a channel are compared with analytical solutions. Excellent agreement is obtained. Additionally, fluid-fluid interaction and fluid-solid interaction (wettability) are modeled and examined. Calculations are performed to simulate two-fluid dynamics in porous media, in a wide range of physical parameters of porous media and flowing fluids. It is shown that the model is capable of determining the minimum body force needed for the nonwetting fluid to percolate through the porous medium. Dependence of the force on the pore size, and geometry, as well as on the saturation of the nonwetting fluid is predicted by the model. In these simulations, the results obtained for the relative permeability coefficients indicate the validity of the reciprocity for the two coupling terms in the modified Darcy's law equations. Implication of the simulation results on two-fluid flow hydrodynamics in a decay-heated particle debris bed is discussed. Received on 1 December 1999  相似文献   

5.
The stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above is examined analytically when the solid and fluid phases are not in local thermal equilibrium. Darcy model with anisotropic permeability is employed to describe the flow and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is implemented to compute the critical Rayleigh number and the corresponding wavenumber for the onset of convective motion. The effect of thermal non-equilibrium and anisotropy in both mechanical and thermal properties of the porous medium on the onset of convection is discussed. Besides, asymptotic analysis for both very small and large values of the interphase heat transfer coefficient is also presented. An excellent agreement is found between the exact and asymptotic solutions. Some known results, which correspond to thermal equilibrium and isotropic porous medium, are recovered in limiting cases.  相似文献   

6.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

7.
8.
Unsteady heat transfer in a fluid saturated porous medium contained in a tube is studied. The porous medium is a bed of uniform diameter spheres, made of glass or steel, while the flowing fluid is water. The flow field is time invariant in the simulation as well as experiments. Step response of the bed when the temperature of the incoming water is suddenly increased, and oscillatory response when hot and cold fluids alternately flow through the tube are studied. Heat transfer models are based on thermal equilibrium between the fluid and the solid phase (one-equation) and thermal non-equilibrium (two-equation) between the two phases. The predictions of these models are compared against experiments conducted in a laboratory-scale apparatus. The comparison is in terms of time evolution of temperature profiles at selected points in the bed, as well as global properties of the temperature distribution such as attenuation and phase lag with respect to the boundary perturbations. The range of Peclet numbers considered in the study is 500–4,000, for which the flow can be considered laminar. Results show that the predictions of the two-equation model are uniformly superior to the one-equation model over the range of Peclet numbers studied. The differences among the three approaches diminish when the thermophysical properties of the solid and fluid phases are close to one another. The differences also reduce in the step response test as steady state is approached.  相似文献   

9.
We consider the case in which more than one fluid phase occupies the void space of a porous medium. The advective flux law is formulated for a fluid phase, under nonisothermal conditions and with the presence of solutes in the fluid phases. The derivation of the flux laws is based on an approximated version of the averaged balance equation for linear momentum. Taking into account momentum transfer through the interface between the fluid phases, leads to coupling between the flow in adjacent phases. Fluxes are also shown to depend on the surface tension at the interface between the adjacent fluid phases. Since the latter depends on temperature and solute concentration in the two phases, the advective flux is shown to depend on both temperature and solute concentration gradients in the two phases. A preliminary order of magnitude analysis gives conditions under which the coupling phenomena are not negligible. The approach is applied to the unsaturated zone, as a typical example of a multiphase porous medium.The main conclusion is that the well known Darcy law for single phase flow, may have to be modified for a multi fluid phase system, especially when temperature and solute concentration are not uniform.  相似文献   

10.
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.  相似文献   

11.
This article presents a mathematical model describing flow of two fluid phases in a heterogeneous porous medium. The medium contains disconnected inclusions embedded in the background material. The background material is characterized by higher value of the non-wetting-phase entry pressure than the inclusions, which causes non-standard behavior of the medium at the macroscopic scale. During the displacement of the non-wetting fluid by the wetting one, some portions of the non-wetting fluid become trapped in the inclusions. On the other hand, if the medium is initially saturated with the wetting phase, it starts to drain only after the capillary pressure exceeds the entry pressure of the background material. These effects cannot be represented by standard upscaling approaches based on the assumption of local equilibrium of the capillary pressure. We propose a relevant modification of the upscaled model obtained by asymptotic homogenization. The modification concerns the form of flow equations and the calculation of the effective hydraulic functions. This approach is illustrated with two numerical examples concerning oil–water and CO2–brine flow, respectively.  相似文献   

12.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

13.
We present the experimental analysis of fluid flow at the pore-scale of a transparent porous medium with matched refractive indices of the solid and liquid phases. The planar laser-induced fluorescence (PLIF) technique described is the first to simultaneously visualize the 3D pore-scale flow of two immiscible liquid phases in porous media. Through the application of a highly precise index matching method and the employment of up-to-date CCD imaging hardware, the system features a high spatial resolution and sampling rate. The method was used to study the dispersion of a tracer dye in single-phase flow and the displacement of oil by water in an imbibition process.  相似文献   

14.
Using Green's function method, analytical solutions are obtained for the problem of transient fluid flow in parallel-plate channels partially filled with porous materials. The unsteadiness in the fluid flow is caused either by a sudden change in the imposed pressure gradient or (and) by a sudden change in the velocity of the channel boundaries. The Brinkman-extended Darcy model is used to model the flow inside the porous domain. Received on 9 April 1997  相似文献   

15.
Free flow channel confined by porous walls is a feature of many of the natural and industrial settings. Viscous flows adjacent to saturated porous medium occur in cross-flow and dead-end filtrations employed primarily in pharmaceutical and chemical industries for solid–liquid or gas–solid separations. Various mathematical models have been put forward to describe the conjugate flow dynamics based on theoretical grounds and experimental evidence. Despite this fact, there still exists a wide scope for extensive research in numerical solutions of these coupled models when applied to problems with industrial relevance. The present work aims towards the numerical analysis of coupled free/porous flow dynamics in the context of industrial filtration systems. The free flow dynamics has been expressed by the Stokes equations for the creeping, laminar flow regime whereas the flow behaviour in very low permeability porous media has been represented by the conventional Darcy equation. The combined free/porous fluid dynamical behaviour has been simulated using a mixed finite element formulation based on the standard Galerkin technique. A nodal replacement technique has been developed for the direct linking of Stokes and Darcy flow regimes which alleviates specification of any additional constraint at the free/porous interface. The simulated flow and pressure fields have been found for flow domains with different geometries which represent prototypes of actual industrial filtration equipment. Results have been obtained for varying values of permeability of the porous medium for generalised Newtonian fluids obeying the power law model. A series of numerical experiments has been performed in order to validate the coupled flow model. The developed model has been examined for its flexibility in dealing with complex geometrical domains and found to be generic in delivering convergent, stable and theoretically consistent results. The validity and accuracy of the simulated results has been affirmed by comparing with available experimental data.  相似文献   

16.
    
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

17.
Diffusion is a slow transport mechanism and advective transport tends to dominate in large-size systems. An alternative transport mechanism is explored herein, whereby zero time-average cyclic fluid flow is compounded with pore-scale mixing to render effective transport. Two one-dimensional cyclic flow cases are analyzed: a rigid porous network with two open boundaries subjected to cyclic flow through, and a compressible porous network with only one open boundary subjected to cyclic compression. The corresponding analytical models predict diffusion-like macroscale response and provide explicit expressions for the effective diffusion coefficients in terms of the microstructure of the porous medium and flow conditions. A parallel experimental study is conducted to corroborate analytical predictions. Results confirm the relevance of pore-scale mixing in cyclic flow as a transport mechanism in porous networks.  相似文献   

18.
In this paper, we introduce a fully coupled thermo‐hydrodynamic‐mechanical computational model for multiphase flow in a deformable porous solid, exhibiting crack propagation due to fluid dynamics, with focus on CO2 geosequestration. The geometry is described by a matrix domain, a fracture domain, and a matrix‐fracture domain. The fluid flow in the matrix domain is governed by Darcy's law and that in the crack is governed by the Navier–Stokes equations. At the matrix‐fracture domain, the fluid flow is governed by a leakage term derived from Darcy's law. Upon crack propagation, the conservation of mass and energy of the crack fluid is constrained by the isentropic process. We utilize the representative elementary volume‐averaging theory to formulate the mathematical model of the porous matrix, and the drift flux model to formulate the fluid dynamics in the fracture. The numerical solution is conducted using a mixed finite element discretization scheme. The standard Galerkin finite element method is utilized to discretize the diffusive dominant field equations, and the extended finite element method is utilized to discretize the crack propagation, and the fluid leakage at the boundaries between layers of different physical properties. A numerical example is given to demonstrate the computational capability of the model. It shows that the model, despite the relatively large number of degrees of freedom of different physical nature per node, is computationally efficient, and geometry and effectively mesh independent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号