首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The characteristics of TiN thin films grown on glass substrates by very low frequency (60 Hz) PECVD were investigated along with the reactive plasma generated using a 60 Hz power source. The TiN film depositions were performed using a gaseous mixture of H2, N2 and TiCl4 onto a substrate positioned between two electrodes using a floating substrate holder with a heating unit. The substrate is electrically floated to avoid sample damages due to ion bombardment. As-grown TiN films showed a NaCl-type fcc structure with a (200) crystallographic plane, low resistivity (~60 μΩ cm) and gold-like color. Crystallinity was improved, impurities such as O and Cl were reduced, and the atomic ratio of N/Ti became stoichiometric with the increase of substrate temperature. Particularly, no chlorine component was detected above 500 °C. Also, the N2 partial pressure strongly affected the deposition rate and ratio of N/Ti. Otherwise, impurities and crystallinity barely changed with the change of N2 pressure. The atomic ratio of N/Ti, impurities, and crystallinity of the films significantly affected the optical and electrical properties. Consequently, we produced stoichiometric Cl-free TiN films with golden color above 500 °C at 60 mTorr. The effects of temperature played an important role in controlling the film properties compared to the N2 partial pressure.  相似文献   

2.
Hongjie Zhang  Gang Chen  Xin Li 《Solid State Ionics》2009,180(36-39):1599-1603
Photocatalysts Bi4Ti3 ? xCrxO12(x = 0.00, 0.06, 0.15, 0.30, 0.40, and 0.50) with perovskite structure were synthesized by sol–gel method and their electronic structures and photocatalytic activities were investigated. The Bi4Ti2.6Cr0.4O12 photocatalyst exhibited the highest performance of H2 evolution in methanol aqueous solution (58.1 μmol h? 1 g? 1) under visible light irradiation (λ > 400 nm) without a co-catalyst, whereas no H2 evolution is observed for Bi4Ti3O12 under the same conditions. The UV–vis spectra indicated that the Bi4Ti2.6Cr0.4O12 had strong photoabsorption in the visible light region. The results of density functional theory (DFT) calculation illuminate that the conduction bands of Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 6p orbitals, and the valence bands are composed of O 2p + Bi 6s hybrid orbitals, while the conduction bands of chromium-doped Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 2p + Cr 3d orbitals, and the O 2p + Cr 3d hybrid obitals are the main contribution to the valence band.  相似文献   

3.
A sharp change in the N2 emission channel from N2O(a)  N2(g) + O(a) to N(a) + N(a)  N2(g) has been found at around 500 K in a steady-state NO + D2 reaction over stepped Pd(211) = [(S)3(111) × (100)] by means of angle-resolved desorption. The desorbing N2 is highly collimated at around 30° off normal toward the step-down direction below about 500 K due to the intermediate N2O decomposition, whereas, above 500 K, the near normally directed desorption due to the recombination of N(a) is relatively enhanced. The N2O decomposition channel is promoted when the reaction is carried out with hydrogen (deuterium) and the channel change is accelerated by quick changes of the amounts of surface hydrogen and oxygen (or NO(a)) into the opposite directions, and enhanced nitrogen removal as ammonia on the resultant hydrogen-rich surface. In the steady-state NO + CO reaction, the N2 emission channel gradually changes above 500 K toward recombination. A model for the off-normal N2 emission is briefly described.  相似文献   

4.
Plasma-based low-energy ion implantation, including plasma source ion nitriding/carburizing and plasma source low-energy ion enhanced deposition of thin films, for surface engineering of metallic materials was emerged as low-temperature, low-pressure surface modification technique. Plasma source ion nitriding onto AISI 316L austenitic stainless steel produced a high nitrogen face-centered-cubic phase (γN) layer about 10 μm thick at the temperature of 380 °C during 4 h with the high microhardness of HK0.1 N 22.0 GPa. The microhardness of the nitrided surface from the titanium nitride phase [(Ti, Al, V)N] layer on Ti6Al4V alloy at 750 °C during 4 h achieved up to about HK0.1 N 15.5 GPa. No pitting corrosion in the Ringer’s solution at 37 °C was detected by electrochemical polarization measurement for the nitrided AISI 316L stainless steel and Ti6Al4V alloy, respectively. Plasma source ion nitriding of the metallic materials provided the engineering surfaces with combined improvement in hardness and corrosion resistance.  相似文献   

5.
The composition and thermodynamic stability of the (110) surface of Sn1 - xTixO2 rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO2 surface monolayer. The bulk and (110) surface properties of Sn1 - xTixO2 were compared to that of the pure SnO2 and TiO2 crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO2 do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO2. The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m2 with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the TiO bonds than SnO bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn1 - xTixO2 solid solutions is proposed.  相似文献   

6.
The present work provides a comprehensive interpretation of factors which affect cation and/or anion disordering in Yb2Ti2O7-based materials, and their effects on transport properties. It also provides guidelines for further improvements of transport properties. Powder processing and thermal history may play major roles, especially when anti-site cation exchange is likely to occur at typical sintering temperatures, as confirmed by structural refinement. One found that the cooling rate may also determine changes in frozen-in conditions. Excessive sintering temperatures affect both the bulk and grain boundary properties of samples with composition Yb2Ti2O7; this was ascribed to the formation of a Ti-rich amorphous phase, and corresponding excess of Yb in the bulk phase. Anti-site occupancy of B-site positions was found to affect ionic conductivity, as demonstrated for conditions that cause cation heterogeneities in Yb2Ti2O7, and also by analysing conductivity data for compositions with excess of Yb. The conductivity data obtained for Yb2 + xTi2 ? xO7 ? d become less dependent on sample preparation, possibly because deliberate composition changes play a prevailing role, compared to intrinsic cationic and anionic disorders. Samples with slight excess of Ti retain prevailing ionic conductivity, which differs significantly from the effects of a typical donor additive on ionic and electronic conductivities.  相似文献   

7.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

8.
Three of the five structures obtained from the evolutionary algorithm based structure search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are relaxed at different pressures in the range 0–200 GPa and the pressure-induced variation of their structural, elastic, dynamical, electronic and thermodynamic properties as well as hardness is investigated in detail. No structural transition is present for these systems in this pressure range. RuC–Zinc blende is mechanically and dynamically unstable close to 100 GPa. RuC-Rhombohedral and Ru3C-Hexagonal retain mechanical and dynamical stability up to 200 GPa. For all three systems the electronic bands and density of states spread out with pressure and the band gap increases with pressure for the semiconducting RuC–Zinc blende. From the computed IR spectrum of RuC–Zinc blende at 50 GPa it is noted that the IR frequency increases with pressure. Using a semi-empirical model for hardness it is estimated that hardness of all three systems consistently increases with pressure. The hardness of RuC–Zinc blende increases towards the superhard regime up to the limiting pressure of its mechanical stability while that of RuC-Rhombohedral becomes 30 GPa at the pressure of 150 GPa.  相似文献   

9.
Nanocrystalline single phase cubic Ti0.9Al0.1B has been prepared at room temperature in a minimum duration of 4 h by mechanical alloying the stoichiometric mixture of Ti, Al and B powders in a high energy planetary ball mill under argon atmosphere. The Rietveld's structure refinement of X-ray diffraction data reveals that cubic Ti–Al–B phase is initiated just after 1 h of milling and at the same time α-Ti (hcp) phase partially transforms to metastable β-Ti (bcc) phase. In the course of milling, ordered Ti–Al–B lattice gradually transforms to a distorted state and the degree of distortion increases with milling time up to 15 h. The formation of cubic Ti0.9Al0.1B is also confirmed from the selected area electron diffraction (SAED) pattern. Microstructure characterization by high resolution transmission electron microscopy (HRTEM) reveals that Ti–Al–B nanoparticles are isotropic in nature with average particle size ~4.5 nm and is in good agreement with the value obtained from the Rietveld analysis of X-ray diffraction data.  相似文献   

10.
The N2 and O2 pressure broadening coefficients of the pure rotational transitions at 625.66 GHz (NKaKc=101?9–100?10, J=10.5–10.5) and 649.70 GHz (NKaKc=102?9–92?8, J=9.5–8.5) in the vibronic ground state X2A′ of the perhydroxyl (HO2) radical have been determined by precise laboratory measurements. For the production of HO2, the mercury-photosensitized reaction of the H2 and O2 precursors was used to provide an optimum condition for measurement of the pressure broadening coefficient. The Superconducting Submillimeter-wave Limb Emission Sounder (SMILES) was designed to monitor the volume mixing ratio of trace gases including HO2 in the Earth's upper atmosphere using these transitions. The precise measurement of pressure broadening coefficient γ in terms of the half width at half maximum is required in order to retrieve the atmospheric volume mixing ratio. In this work, γ coefficients of the 625.66 GHz transition were determined for N2 and O2 at room temperature as γ(N2)=4.085±0.049 MHz/Torr and γ(O2)=2.578±0.047 MHz/Torr with 3σ uncertainty. Similarly, the coefficients of the 649.70 GHz transition were determined as γ(N2)=3.489±0.094 MHz/Torr and γ(O2)=2.615±0.099 MHz/Torr. The air broadening coefficients for the 625.66 GHz and 649.70 GHz lines were estimated at γ(air)=3.769±0.067 MHz and 3.298±0.099 MHz respectively, where the uncertainty includes possible systematic errors. The newly determined coefficients are compared with previous results and we discuss the advantage of the mercury-photosensitized reaction for HO2 generation. In comparison with those of other singlet molecules, the pressure broadening coefficients of the HO2 radical are not much affected by the existence of an unpaired electron.  相似文献   

11.
《Current Applied Physics》2010,10(2):416-418
We studied nonselective, vertical dry etching of GaAs and AlGaAs/GaAs structure in high pressure capacitively coupled BCl3/N2 plasmas. The operating pressure was fixed at 150 m Torr. We found that there was an optimized process condition for nonselective and vertical etching of GaAs and AlGaAs/GaAs at the relatively high pressure. It was noted that there was a range of % N2 (i.e. 20–40%) where nonselective etching of GaAs over AlGaAs could be achieved in the BCl3/N2 mixed plasma. We also found that dry etching of GaAs and AlGaAs/GaAs structure provided quite vertical and smooth surface when % N2 was in the range of 0–20% in the BCl3/N2 plasma. The maximum etch rates for GaAs (0.41 μm/min) and AlGaAs/GaAs structure (0.42 μm/min) were obtained with 20–30% N2 composition in the plasma.  相似文献   

12.
A WF6–H2–N2 precursor system was used for plasma-enhanced chemical vapor deposition (PECVD) of WNx films. We examined the microstructural changes of the WNx films depending on N2/H2 flow-rate ratio and post-annealing (600–800 °C for 1 h). As the N2/H2 flow rate was increased from 0 to 1.5, as-deposited WNx films exhibited various different crystalline states, such as nanocrystalline and/or amorphous structure comprising W, WN, and W2N phases, a fine W2N granular structure embedded in an amorphous matrix, and a crystalline structure of β-W2N phase. After post-annealing above 600 °C, crystalline recovery with phase separation to β-W2N and α-W was observed from the WNx films deposited at an optimized deposition condition (flow-rate ratio = 0.25). From this PECVD method, an excellent step coverage of ∼90% was obtained from the WNx films at a contact diameter of 0.4 μm and an aspect ratio of 3.5.  相似文献   

13.
This paper presents ambient and high pressure measurements of transport properties of the Bi2Te3–Sb2Te3 series of materials. The electrical resistivity, thermal conductivity, and Seebeck coefficient have been measured on both end compounds and the direct solid solution of the two at pressure up to 10 GPa. An additional discussion involving the high pressure structure will be presented. From this, it was determined that these materials undergo at least two structural phase transitions between 0 and 20 GPa and a discussion is presented regarding this and the changes in the transport properties.  相似文献   

14.
The nitrogen (N) doped Ti4O7 photocatalyst was prepared from urea as a nitrogen source by a microwave method. The resulting photocatalyst was characterized by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and UV–vis spectroscopy (UV–Vis). 0.1 M N doped Ti4O7 photocatalyst exhibited methylene blue decomposition efficiency of 100% which was prepared by microwave treatment for above 30 min. Rate constant was found to be 0.028910 min−1 in the first order kinetic.  相似文献   

15.
In an attempt to obtain spinel Li4Ti5O12 with smallest possible grain size and highest possible phase purity via a solid state route, we tried to elevate reactivity of the reactant mixture by mechanical activation and appropriate choice of the starting materials. From the stoichiometric mixture comprising Li2CO3 and 150 nm anatase, we needed to heat at 950 °C for 1 h to obtain 81–88% phase purity (PhP) of Li4Ti5O12 with its average grain size ca 600 nm. After mechanical activation with a multi-ring mill for 30 min, 850 °C was enough to obtain 85–87% pure 500 nm spinel. From a combination of LiNO3 and 50 nm anatase, 90–91% phase pure product with its grain size 240 nm was obtained at 750 °C due to fusion of the nitrate and shorter diffusion path. By using CH3COOLi.2H2O and 50 nm anatase we obtained 130 nm Li4Ti5O12 with its PhP ca 90% by milling the mixture preliminarily calcined at 500 °C for 1 h and heating subsequently at 700 for 1 h.  相似文献   

16.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T  170 K. With the application of pressure this phase transition is rapidly suppressed and by ~0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.  相似文献   

17.
Titanium oxide films grown on Mo(100) have been investigated by low-energy electron diffraction (LEED) and soft X-ray photoelectron spectroscopy (PES). The film was grown by Ti deposition on Mo(100) and subsequent oxidation of the film by 12 L of O2 exposure at room temperature. As the film was annealed at 700–1000 °C, the film in which the Ti atoms were in a Ti3+ oxidation state was formed. As the film was annealed at 1100–1500 °C, the oxidation state of Ti in the film was converted to Ti2+. The valence electronic structure of the film was measured under the condition that the emission from the Mo substrate was minimized due to a Cooper minimum of the Mo 4 d photoionization cross sections (hν = 100 eV). It was found that the Ti 3 d band in normal-emission spectra was increased in intensity when the film was annealed at 1100–1500 °C. As the film was annealed at 1300 °C for 10 s and 20 s, the film-covered Mo(100) gave (2 × 2) and (4 × 1) LEED patterns, respectively. The two-dimensional band structure of the (2 × 2) system was investigated by angle-resolved PES, and it was found that the film with a (1 × 1) periodicity with respect to the Mo(100) substrate existed in the (2 × 2) system.  相似文献   

18.
Heterostructured CdS-pillared H2Ti3O7 nanohybrids were prepared by the self-assembly of exfoliated trititanate nanosheets and CdS nanosol particles under the electrostatic interactions. It was revealed that the present nanohybrids were mesoporous with specific surface areas of about 90 m2 g−1. The nanohybrids exhibited high photocatalytic activity and good recurrence stability in the H2 evolution from water splitting. When the preparation molar ratio of H2Ti3O7/CdS was 2:1, the nanohybrid reached a high H2-evolution rate of 1523 μmol h−1 g−1 under a 300 W Xe lamp irradiation, which was 13 times higher than the bare CdS. Apart from the wider spectral responsive range, the superior photocatalytic performance of the nanohybrids was predominantly attributed to the efficient photogenerated charge separation between the trititanate nanosheets and the encapsulated CdS nanoparticles.  相似文献   

19.
AlTiN films with different nitrogen partial pressures were deposited using arc ion plating (AIP) technique. In this study, we systematically investigated the effect of the nitrogen partial pressure on composition, deposition efficiency, microstructure, macroparticles (MPs), hardness and adhesion strength of the AlTiN films. The results showed that with increasing the nitrogen partial pressure, the deposition rate exhibited a maximum at 1.2 Pa. Results of X-ray photoelectron spectroscopy (XPS) analysis revealed that AlTiN films were comprised of Ti–N and Al–N bonds. XRD results showed that the films exhibited a (1 1 1) preferred growth, and AlTi3N and TiAlx phases were observed in the film deposited at 1.7 Pa. Analysis of MPs statistics showed MPs decreased with the increase in the nitrogen partial pressure. In addition, the film deposited at 1.2 Pa possessed the maximum hardness of 38 GPa and the better adhesion strength.  相似文献   

20.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号