首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Off-road operations are critical in many fields and the complexity of the tire-terrain interaction deeply affects vehicle performance. In this paper, a semi-empirical off-road tire model is discussed. The efforts of several researchers are brought together into a single model able to predict the main features of a tire operating in off-road scenarios by computing drawbar pull, driving torque, lateral force, slip-sinkage phenomenon and the multi-pass behavior. The approach is principally based on works by Wong, Reece, Chan, and Sandu and it is extended in order to catch into a single model the fundamental features of a tire running on soft soil. A thorough discussion of the methodology is conducted in order to highlight strengths and weakness of different implementations. The study considers rigid wheels and flexible tires and analyzes the longitudinal and the lateral dynamics. Being computationally inexpensive a semi-empirical model is attractive for real time vehicle dynamics simulations. To the best knowledge of the authors, current vehicle dynamics codes poorly account for off-road operations where tire-terrain interaction dominates vehicle performance. In this paper two soils are considered: a loose sandy terrain and a firmer loam. Results show that the model realistically predicts longitudinal and lateral forces providing at the same time good estimates of the slip-sinkage behavior and tire parameters sensitivity.  相似文献   

2.
In the United States, the NATO Reference Mobility Model (NRMM) has been used for evaluating military ground vehicle mobility and the Vehicle Cone Index (VCI) has been selected as a mobility metric. VCI represents the minimum soil strength required for a vehicle to consistently make a specific number of passes, usually one or fifty passes. In the United Kingdom, the Mean Maximum Pressure (MMP) has been adopted as a metric for assessing military vehicle cross-country mobility. MMP is the mean value of the maxima occurring under all the wheel stations of a vehicle. Both VCI and MMP are empirically based. This paper presents a review of the basis upon which VCI and MMP were developed, as well as their applications to evaluating vehicle mobility in practice. With the progress in terramechanics and in modelling and simulation techniques in recent years, there is a growing desire to develop physics-based mobility metrics for next generation vehicle mobility models. Based on the review, criteria for selecting physics-based mobility metrics are proposed. Following these criteria, metrics for characterizing military vehicle traction limits and traversability on a given operating area are recommended.  相似文献   

3.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号