首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The large piezoelectric coefficient and multiferroicity of bismuth ferrite (BFO) make it an attractive candidate for lead-free ferroelectric devices. However, large leakage currents have limited broader applications. Rare-earth substitutions in BFO have been shown to improve ferroelectric and magnetic properties. In this work, we employed piezoresponse and conductive atomic force microscopy to study ferroelectric domains in Bi1-xSmxFeO3 (x = 0–0.150) grown by the co-precipitation method. The combined piezoresponse and conductivity measurements can directly visualize the local ferroelectric domains under different sample bias. At Sm mol% > 7.5, Sm-substitution effectively lowers defect-generated conductivity. At Sm mol% < 7.5, conductivity increases due to conductive domain walls inside sample grains. The surfaces of these conductive samples exhibit a p-type rectifying behavior while the bulk is n-type. Our work details how the local piezoelectric properties and transport behaviors of BFO ceramics change as a function of Sm-substitution.  相似文献   

2.
Recent advances in microscale experiments and molecular simulations confirm that slip of fluid on solid surface occurs at small scale, and thus the traditional no-slip boundary condition in fluid mechanics cannot be applied to flow in micrometer and nanometer scale tubes and channels. On the other hand, there is an urgent need to understand fluid flow in micrometer scale due to the emergence of biochemical lab-on-the-chip system and micro-electromechanical system fabrication technologies. In this paper, we study the pressure driven transient flow of an incompressible Newtonian fluid in microtubes with a Navier slip boundary condition. An exact solution is derived and is shown to include some existing known results as special cases. Through analysis of the derived solution, it is found that the influences of boundary slip on the flow behaviour are qualitatively different for different types of pressure fields driving the flow. For pressure fields with a constant pressure gradient, the boundary slip does not alter the interior material deformation and stress field; while, for pressure fields with a wave form pressure gradient, the boundary slip causes the change of interior material deformation and consequently the velocity profile and stress field. We also derive asymptotic expressions for the exact solution through which a parameter is identified to dominate the behaviour of the flow driven by the wave form pressure gradient, and an explicit formulae for the critical slip parameter leading to the maximum transient flow rate is established.  相似文献   

3.
《Current Applied Physics》2020,20(10):1185-1189
Understanding ferroelectric domain switching dynamics at the nanoscale is a great of importance in the viewpoints of fundamental physics and technological applications. Here, we investigated the intriguing polarity-dependent switching dynamics of ferroelectric domains in epitaxial BiFeO3 (001) capacitors using transient switching current measurement and piezoresponse force microscopy. We observed the distinct behavior of nucleation and domain wall motion depending on the polarity of external electric bias. When applying the negative bias to the top electrode, the sideways domain wall motion initiated by only few nuclei was dominant to polarization switching. However, when applying the positive bias, most of domains started to grow from the pre-existed pinned domains and their growth velocity was much smaller. We suggest that the observed two distinct domain switching behavior is ascribed to the interfacial defect layer.  相似文献   

4.
This paper explores in depth the partially switched states of ferroelectrics, through macroscopic polarization measurements in conjunction with piezoresponse force microscopy, x-ray diffraction and dielectric characterization, with the ultimate purpose to explore their usefulness for unconventional multiple-value nonvolatile memory applications. We prove that it is possible to reproducibly generate analog levels of polarization in a Pb(Zr,Ti)O3 ferroelectric ceramic capacitor and control them with electric pulses that stabilize unique domain patterns, compatible with those of adjacent states. Some of these states contain, in the same locations of the sample surface, areas with orientation of polarization vector opposite to that of the electric field that decides the analog polarization level, while others contain clamped domain structures with reduced piezoelectric activity. We argue that disclosing the complex relationships between the domain structures of the analog polarization states, as well as their dependence on write voltage parameters, might help to expand the multiple-value storage capability of ferroelectrics beyond what would be achievable on macroscopic scale.  相似文献   

5.
Two kinds of different aligned zinc oxide (ZnO) crystal microtube arrays were prepared on silicon (1 0 0) substrates by using of a simple thermal chemical reaction vapor transport deposition method. The synthesizing processes were done by using of heating the mixture of zinc oxide and graphite powders at 1150 °C in a quartz tube with one side opened to the air. The O2 gas (99.9%) and air had been introduced as the assistant gases, respectively. Both the flow rates were 100 ml/min. And the temperature of the Si (1 0 0) substrate region was about 400 °C. There is no other metal catalyst on the Si wafers in the process. After growing for 30 min, one kind of synthesized sample is trumpet-shaped hexagonal microtube arrays assisted with O2 gas and another produced sample is the uniform hexagonal microtubes only assisted with air. As the increasing of preparing time, their maximal lengths can range from several 10 μm to mm scale. The microstructure, room temperature photoluminescence properties and growth mechanism of both aligned microtube arrays were investigated and discussed.  相似文献   

6.
《Current Applied Physics》2018,18(8):886-892
Effects of annealing temperature (600–750 °C) on crystalline structure, the morphology and piezoresponse hysteresis loops of BaTiO3 nanofibers prepared by electrospinning are characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscope and piezoresponse force microscope. When the annealing temperature is 700 °C, the nanofibers become smoother and have a diameter of 100–300 nm. Meanwhile the typical butterfly-shaped amplitude loop and 180°phase change represents the best ferroelectric and piezoelectric properties at 700 °C. So the 700 °C was found to be optimum for good piezoelectric characteristics at annealing temperature of 600 °C–750 °C. In order to give more clear evolution of domain states at different external fields, the three dimensional topographic and phase images of the nanofiber at different temperatures are observed by piezoresponse force microscope. The 90° domain switching is observed during heating from room temperature to 125 °C and the domain switching tends to be stable when the temperature exceeds a critical value. The thermal stress due to the high temperatures is responsible for switching mechanism from the perspective of equilibrium state free energy. This work suggests that the temperature variation should be considered while designing the ferroelectric devices based on one dimensional material.  相似文献   

7.
In this paper, hollow and porous Cu2O nanoparticles were prepared by adjusting the cationic surfactant cetyltrimethylammonium (CTAB) concentration in the solution-phase reaction. Structural investigations reveal that Cu2Onanoparticles can be either well-defined hollow nanoboxes or porous nanocubes depending on the synthesis conditions. The transmission electron microscopy (TEM) observations demonstrated that the nanoparticles in general are composed of small grains coherently growing along certain preferred orientations.  相似文献   

8.
Water effect on the combustion preparation of MgO is presented. The obtained materials are characterized through their specific surface area, morphology, particle shape, fractal dimension and Co2+ sorption. The surface fractal dimension of the combustion prepared sample was 2.0 but in those where water was included it decreased to 1.8. In the sample prepared by calcination it was 2.3. A linear correlation between the fractal dimension and Co2+ sorption was found.  相似文献   

9.
Pure and lanthanum (La) doped ZnO nanorods were synthesized via co-precipitation method. The structure and morphology of as grown ZnO and La-ZnO nanoparticles were studied using transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) methods. The values of remnant polarization and coercive field were found to be 0.027 μC/cm2 and 1.33 kV/cm, respectively, for as grown La-ZnO nanostructures. High Curie temperature (276 °C) for doped ZnO was observed in dielectric study. Piezoelectric coefficient at room temperature was found to be 101.30 pm/V. I-V characteristics were studied for both pure and doped ZnO nanoparticles. Photo-anodes of dye-sensitized solar cells (DSSCs) were made using ZnO and La-ZnO nanorods. The conversion efficiency and short circuit current density of La-ZnO nanorods based DSSC were 0.36% and 1.31 mA/cm2, respectively, which were found to be largely enhanced when compared with that of pure ZnO based DSSC (0.20% and 0.94 mA/cm2).  相似文献   

10.
Nanoencapsulation may improve activity of protein or polypeptide antimicrobials against a variety of microorganisms. In this study, nanoliposomes prepared from different lipids (Phospholipon 90H, Phospholipon 100H, dipalmitoylphosphatidylcholine (DPPC), stearylamine (SA), dicetyl phosphate (DCP) and cholesterol) by a new, non-toxic and scalable method, were tested for their capacity to encapsulate nisin Z and target bacteria (Bacillus subtilis and Pseudomonas aeruginosa). Factors affecting the entrapment efficiency (charge and cholesterol concentration in the vesicles) and stability of nanoliposomes were assessed. The nanoliposomes and their bacterial targeting were visualised, using different microscopes under air and liquid environments. Nisin was entrapped in different nanoliposomes with encapsulation efficiencies (EE) ranging from 12% to 54%. Anionic vesicles possessed the highest EE for nisin while increase in cholesterol content in lipid membranes up to 20% molar ratio resulted in a reduction in EE. Stability of nanoliposome-encapsulated nisin was demonstrated for at least 14 months at 4 °C (DPPC:DCP:CHOL vesicles) and for 12 months at 25 °C (DPPC:SA:CHOL vesicles).  相似文献   

11.
The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3.  相似文献   

12.
Recently, in ferroelectric materials, there have been many experimental efforts to find out more intriguing topological objects and their functionalities, such as conduction property. Here we investigated ferroelectric domain structures and related topological defects in the (111)-oriented epitaxial tetragonal PbZr0.35Ti0.65O3 thin film. Systematic piezoresponse force microscopy measurements revealed that the field-induced polarization switching can form thermodynamically stable superdomain structures composed of nano-sized stripe subdomains. Within such superdomain structures, we observed the exotic equilateral triangular in-plane flux-closure domains composed of three stripe domain bundles with 120/120/120 degrees of separation. The conductive-atomic force microscopy measurements under vacuum showed that some vertices have significantly higher conductivity compared to other surrounding regions. This work highlights electric field-driven polarization switching and unique crystallographic symmetry (here, three-fold rotational symmetry) can generate exotic ferroelectric domain structures and functional topological defects, such as conductive vertices.  相似文献   

13.
机械剥离折叠石墨烯粘附与纳米摩擦性质   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用原子力显微镜研究了空气和氮气两种不同气氛环境下的机械剥离石墨烯粘附力,发现氮气环境下的粘附力更小,且石墨烯边缘的粘附力比内部区域大.在氮气环境下探究了折叠石墨烯粘附力与层数的关系及其摩擦性能,结果表明粘附力与折叠石墨烯层数无明显关系,折叠石墨烯各区域的摩擦性能都远超二氧化硅基底,且单层、单层上折叠、双层以及双层上折叠区域的摩擦系数依次降低,分别为0.049,0.031,0.023和0.021,摩擦力也依次降低,折叠处由于层与层之间的结合力弱于相同层数的石墨烯,摩擦性能有所降低,但未发现粘附力与摩擦力之间的明显关系.在采用尖针和球针测量粘附力时,测量历史不会对后续粘附力产生明显影响.对空气环境下出现的新鲜折叠石墨烯的研究表明新鲜折叠石墨烯的折叠区域摩擦力较未折叠区域显著增大.  相似文献   

14.
胡海龙  张琨  王振兴  王晓平 《物理学报》2006,55(3):1430-1434
在Au(111)表面自组装制备了不同链长的烷烃硫醇分子膜,并利用导电原子力显微镜研究了 自组装分子膜的输运特性随外加压力的变化.结果发现分子膜的电流随压力的增加而增大, 其变化特征可以较好地用Hertz模型描述.在相同压力和电压下,通过分子膜的电流随分子链 长的增加呈指数衰减,其衰减因子先随压力的增加而减小,后逐渐趋于稳定.此外,长链分 子自组装膜的电流随压力的变化比短链分子膜更为明显.分析表明,自组装硫醇分子膜输运 特征的压力依赖性主要源于电荷在分子膜中的链间隧穿过程. 关键词: 分子自组装 输运特性 原子力显微镜  相似文献   

15.
16.
The fabrication of nanopatterned surfaces at large scale attracts the interest of research groups from a wide range of areas as biotechnology, nanoelectronics and nanomagnetism. An extended method to pattern the surface in the nanoscale is the fabrication of ordered arrays of nanoelements based on porous templates as Nanoporous Anodic Aluminium Oxide (NAAO). One of the challenges of the NAAO fabrication, based on self-organized methods, is the control of the symmetry and lattice parameter of the ordered nanoporous films. In this work, we present a combined method based on Atomic Force Microscopy (AFM) nanoimprint and anodic oxidation of Al surface. AFM nanoindentations substitute the first anodization process and even more important, allow us to control the symmetry and the lattice parameter of the ordered arrays. In addition, by using AFM nanoimprint method it is possible to select the region were the ordered alumina grows. We demonstrate that square nanoporous arrays of alumina with lattice parameter of 105 nm can be obtained by this method.  相似文献   

17.
Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance---plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered---pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscope-based tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp$^{3}$ hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp$^{3}$ hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.  相似文献   

18.
Transparent GdTaO4:Eu3+ thick films were prepared from the inorganic salt and 2-methoxyethanol solution containing polyvinylpyrrolidone (PVP) via sol-gel technique. The critical thickness of the film, i.e. the maximum thickness achievable without crack formation via non-repetitive deposition, was 0.8 μm. The effect of PVP on the morphology, crystallization behavior and optical property of the GdTaO4:Eu3+ thick film was investigated. The results indicated that PVP could play an important role in the formation of transparent GdTaO4:Eu3+ thick films, suppressing the stress evolution, adjusting the sol viscosity, ameliorating the crystallinity, and strengthening the covalency of Eu-O bonds. The GdTaO4:Eu3+ thick films prepared with PVP exhibited a superior photoluminescence and X-ray exited luminescence, which implies that it will have promising applications in high-spatial-resolution X-ray imaging and flat panel display devices.  相似文献   

19.
In this study we develop the exact second order formalism of piezoelectric structures under an external mechanical stress. Indeed, previous models are approximated since they consist in deriving all the equations in the natural coordinate system (corresponding to the pre-stress free case). Hence, our exact formalism proposes to obtain the whole of equations in the current coordinate system (which is the coordinate system after the pre-deformation). Then, this exact formalism is used to derive the modified Christoffel equations and the modified KLM model. Finally, we quantify the correction with the approximate formalism on several transfer functions and electro-mechanical parameters for a non hysteretic material (lithium niobate). In conclusion, we show that for this material, significant corrections are obtained when studying the plane wave velocities and the electrical input impedance (about 4%), whereas other parameters such as coupling coefficient and impulse response are less influenced by the choice of coordinate systems (corrections less than 0.5%).  相似文献   

20.
In this paper we report on the effect of annealing on the microsctructural and optoelectronic properties of titanium dioxide (TiO2) thin films prepared using sol-gel method onto silicon (Si) (100) and quartz substrates. The annealing temperatures range from 200 to 1000 °C. The Microstructural properties of annealed thin films were investigated by Thermal gravimetric analyses (TGA), X-ray diffraction (XRD) and Raman Spectroscopy. The surface morphology of the film was examined using Atomic Force Microscopy (AFM) method. The optical properties of TiO2 thin films were characterized using UV-VIS and Spectroscopic ellipsometry. The results have shown that the TiO2 thin films persist in the anatase phase even after annealing at 800 °C. The phase transformation from anatase to rutile occurred only when the films were annealed at 1000 °C. AFM studies revealed nanocrystalline structure where their shape and density depend strongly on the annealing temperatures. The elaborated nanostructured-TiO2 thin films present a high transparency in the visible range. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. Spectroscopic ellipsometry and UV-VIS shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. The Anatase phase was find to show higher photocatalytic activity than the rutile one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号