首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
The multiplicative decomposition of the deformation gradient \({{\bf F} = {{\hat{\bf F}}}{\bf F}^*}\) is often used in finite deformation continuum mechanics as a basis for treating mechanical effects including plasticity, biological growth, material swelling, and notions of material morphogenesis. Evolution rules for the particular effect from this list are then posed for F*. The tensor \({{{\hat{\bf F}}}}\) is then invoked to describe a subsequent elastic accommodation, and a hyperelastic framework is put in place for its determination using an elastic energy density function, say \({W({\hat{\bf F}})}\) , as a constitutive specification. Here we explore the theory that emerges if both F* and \({{\hat{\bf F}}}\) are governed by hyperelastic criteria; thus we consider energy densities \({W({{\hat{\bf F}}}, {\bf F}^*)}\) . The decomposition of F is itself determined by energy minimization, and the variation associated with the multiplicative decomposition gives a tensor relation that is interpreted as an internal balance requirement. Our initial development purposefully proceeds with minimal presumptions on the kinematic interpretation of the factors in the deformation gradient decomposition. Connections are then made to treatments that ascribe particular kinematic properties to the decomposition factors—the theory of structured deformations is especially significant in this regard. Such theories have broad utility in describing certain substructural reconfigurations in solids. To demonstrate in the context of the present variational treatment we consider a boundary value problem that involves an imposed twist. If the twist is small then the minimizer is classically smooth. At larger values of twist the energy minimizer exhibits a non-smooth deformation that localizes slip at a singular surface.  相似文献   

5.
Material electromagnetic fields and material forces   总被引:2,自引:0,他引:2  
Electromagnetic fields address configurational forces in a natural way through an energy–stress tensor, which reduces to the Maxwell tensor in the simplest case. This tensor is related to physical forces and to the Cauchy traction in a continuum. Material forces, as opposed to physical forces, are of a different nature as they act upon a site of a continuum where the possible material inhomogeneity is located. A material energy–stress tensor, which is reminiscent of the Maxwell stress, is associated with these forces. Through appropriate balance laws, a material momentum is also associated with material forces. The material momentum is of particular interest in electromagnetic materials as it is intimately related to the pseudomomentum of light [Peierls in Highlights of Condensed Matter Physics, pp. 237–255 (1985) and in Surprises in Theoretical Physics, pp. 91–99 (1979); Thellung in Ann. Phys. 127, 289–301 (1980)]. The balance law for the material momentum can be derived either from the classical physical laws or independently of them. This derivation, which is based on the material electromagnetic potentials and the related gauge transformations, is discussed and commented on for an electromagnetic body.  相似文献   

6.
Summary In this work, measurement of the flow field around a rotating sphere has been used to obtain the material parameters of a second-order Rivlin-Ericksen fluid. Experiments were carried out with a Laser-Doppler anemometer to obtain the velocity distribution and usingGiesekus' analysis, the material parameters for the second-order fluid were obtained.
Zusammenfassung In dieser Untersuchung wird die Ausmessung des Strömungsfeldes um eine rotierende Kugel dazu verwendet, um die Stoffparameter einer Rivlin-Ericksen-Flüssigkeit zweiter Ordnung zu erhalten. Die Experimente zur Bestimmung der Geschwindigkeitsverteilung werden mit einem Laser-Doppler-Anemometer durchgeführt, und zur Auswertung der Parameter der Flüssigkeit zweiter Ordnung wird eine Analyse vonGiesekus benutzt.

Notations A 1,A2 Rivlin-Ericksen tensor - A 2 Parameter used in eq. [12] - a Radius of the sphere - B Parameter used in eq. [12] - I Unit tensor - m 0(12)/a2, parameter used by ref. (8) - N 1,N2 First and second normal stress difference - p Isotropic pressure - Radial distance from the centre of the rotating body - S 1,S2 Stress tensor - v r,v,v Velocity components in a spherical coordinate system - 0,1,2 Material parameters used in eq. [2] - Shear rate - a Apparent voscosity - 0 Zero-shear viscosity - Angle measured from the axis of rotation - Fluid density - Stream function - Shear stress - Angular velocity With 3 figures  相似文献   

7.
8.
9.
This paper is devoted to a new finite element consistency analysis of Cauchy–Born approximations to atomistic models of crystalline materials in two and three space dimensions. Through this approach new “atomistic Cauchy–Born” models are introduced and analyzed. These intermediate models can be seen as first level atomistic/quasicontinuum approximations in the sense that they involve only short-range interactions. The analysis and the models developed herein are expected to be useful in the design of coupled atomistic/continuum methods in more than one dimension. Taking full advantage of the symmetries of the atomistic lattice, we show that the consistency error of the models considered both in energies and in dual W 1,p type norms is ${\mathcal{O}(\varepsilon^2)}$ , where ${\varepsilon}$ denotes the interatomic distance in the lattice.  相似文献   

10.
On the effective stress in unsaturated porous continua with double porosity   总被引:3,自引:0,他引:3  
Using mixture theory we formulate the balance laws for unsaturated porous media composed of a double-porosity solid matrix infiltrated by liquid and gas. In this context, the term ‘double porosity’ pertains to the microstructural characteristic that allows the pore spaces in a continuum to be classified into two pore subspaces. We use the first law of thermodynamics to identify energy-conjugate variables and derive an expression for the ‘effective’, or constitutive, stress that is energy-conjugate to the rate of deformation of the solid matrix. The effective stress has the form , where σ is the total Cauchy stress tensor, B is the Biot coefficient, and is the mean fluid pressure weighted according to the local degrees of saturation and pore fractions. We identify other emerging energy-conjugate pairs relevant for constitutive modeling of double-porosity unsaturated continua, including the local suction versus degree of saturation pair and the pore volume fraction versus weighted pore pressure difference pair. Finally, we use the second law of thermodynamics to determine conditions for maximum plastic dissipation in the regime of inelastic deformation for the unsaturated two-porosity mixture.  相似文献   

11.
We develop a non-singular, self-consistent framework for computing the stress field and the total elastic energy of a general dislocation microstructure. The expressions are self-consistent in that the driving force defined as the negative derivative of the total energy with respect to the dislocation position, is equal to the force produced by stress, through the Peach-Koehler formula. The singularity intrinsic to the classical continuum theory is removed here by spreading the Burgers vector isotropically about every point on the dislocation line using a spreading function characterized by a single parameter a, the spreading radius. A particular form of the spreading function chosen here leads to simple analytic formulations for stress produced by straight dislocation segments, segment self and interaction energies, and forces on the segments. For any value a>0, the total energy and the stress remain finite everywhere, including on the dislocation lines themselves. Furthermore, the well-known singular expressions are recovered for a=0. The value of the spreading radius a can be selected for numerical convenience, to reduce the stiffness of the dislocation equations of motion. Alternatively, a can be chosen to match the atomistic and continuum energies of dislocation configurations.  相似文献   

12.
This paper presents a non-classical continuum theory for fluent continua in which the conservation and balance laws are derived by incorporating both internal rotation rates arising from the velocity gradient tensor and the rotation rates of the Cosserats. Specifically, in this non-classical continuum theory we have (1) the usual velocities (\(\bar{ \pmb {\varvec{v }}}\)), (2) the three internal rotation rates (\({}_i^t\bar{ \pmb {\varvec{\Theta }}}\)) about the axes of a fixed triad whose axes are parallel to the x-frame arising from the velocity gradient tensor \((\bar{ \pmb {\varvec{L }}})\) that are completely defined by the antisymmetric part of the velocity gradient tensor, and (3) three additional rotation rates (\({}_e^t\bar{ \pmb {\varvec{\Theta }}}\)) about the axes of the same triad located at each material point as additional three unknown degrees of freedom, referred to as Cosserat rotation rates. This gives rise to \(\bar{ \pmb {\varvec{v }}}\) and \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) as six degrees of freedom at a material point. The internal rotation rates \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\), often neglected in classical fluid mechanics, exist in all deforming fluent continua as these are due to velocity gradient tensor. When the internal rotation rates \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\) are resisted by deforming fluent continua, conjugate moment tensor arises that together with \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\) may result in energy storage and/or dissipation, which must be considered in the conservation and balance laws. The Cosserat rotation rations \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) also result in conjugate moment tensor that together with \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) may also result in energy storage and/or dissipation. The main focus of this paper is a consistent derivation of conservation and balance laws for fluent continua that incorporate the aforementioned physics and associated constitutive theories for thermofluids using the conditions resulting from the entropy inequality. The material coefficients derived in the constitutive theories are clearly defined and discussed.  相似文献   

13.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

14.
This paper discusses boundary conditions appropriate to a theory of single-crystal plasticity (Gurtin, J. Mech. Phys. Solids 50 (2002) 5) that includes an accounting for the Burgers vector through energetic and dissipative dependences on the tensor G=curlHp, with Hp the plastic part in the additive decomposition of the displacement gradient into elastic and plastic parts. This theory results in a flow rule in the form of N coupled second-order partial differential equations for the slip-rates , and, consequently, requires higher-order boundary conditions. Motivated by the virtual-power principle in which the external power contains a boundary-integral linear in the slip-rates, hard-slip conditions in which
(A)
on a subsurface Shard of the boundary
for all slip systems α are proposed. In this paper we develop a theory that is consistent with that of (Gurtin, 2002), but that leads to an external power containing a boundary-integral linear in the tensor , a result that motivates replacing (A) with the microhard condition
(B)
on the subsurface Shard.
We show that, interestingly, (B) may be interpreted as the requirement that there be no flow of the Burgers vector across Shard.What is most important, we establish uniqueness for the underlying initial/boundary-value problem associated with (B); since the conditions (A) are generally stronger than the conditions (B), this result indicates lack of existence for problems based on (A). For that reason, the hard-slip conditions (A) would seem inappropriate as boundary conditions.Finally, we discuss conditions at a grain boundary based on the flow of the Burgers vector at and across the boundary surface.  相似文献   

15.
Structured deformations are used to refine the basic ingredients of continuum field theories and to derive a system of field equations for elastic bodies undergoing submacroscopically smooth geometrical changes as well as submacroscopically non-smooth geometrical changes (disarrangements). The constitutive assumptions employed in this derivation permit the body to store energy as well as to dissipate energy in smooth dynamical processes. Only one non-classical field G, the deformation without disarrangements, appears in the field equations, and a consistency relation based on a decomposition of the Piola-Kirchhoff stress circumvents the use of additional balance laws or phenomenological evolution laws to restrict G. The field equations are applied to an elastic body whose free energy depends only upon the volume fraction for the structured deformation. Existence is established of two universal phases, a spherical phase and an elongated phase, whose volume fractions are (1?γ0)3 and (1?γ0) respectively, with γ0:=( $ \sqrt 5 $ ?1)/2 the “golden mean”.  相似文献   

16.
Electron drift in specified fields has been examined in [1] and, as applied to a magnetron, in [2–4] with the averaging method. In [1,2], a first- and in [3,4] in a second-order approximation of the small parameter ) E/2L was used. Here and below, E and H=(c/) are the field strengths, L is the characteristic dimension of the field heterogeneity, is the charge-mass ratio of an electron (>0), and c is the velocity of light. An attempt to construct similar approximations for a drifting electron beam with allowance for the space-charge field, within the framework of the averaging method, involves considerable mathematical difficulties. This paper describes an attempt to solve the latter problem for a stationary monoenergetic beam that drifts under the influence of a plane electric field with potential (x,y) across a strong homogeneous magnetic field Hz H=const. Solutions are constructed by the method of successive approximations, in powers of the parameter =h/L, where h is the Larmor electron radius for narrow beams with a width on the order of 2h.I thank A. N. Ievlevu for assistance in the computational and graphical work, V. Ya. Kislov for a discussion of the results, and L. A. Vainshtein for suggesting the problem examined in §3 and for critical comments.  相似文献   

17.
18.
19.
Current interest in nanoscale systems and molecular dynamical simulations has focussed attention on the extent to which continuum concepts and relations may be utilised meaningfully at small length scales. In particular, the notion of the Cauchy stress tensor has been examined from a number of perspectives. These include motivation from a virial-based argument, and from scale-dependent localisation procedures involving the use of weighting functions. Here different definitions and derivations of the stress tensor in terms of atoms/molecules, modelled as interacting point masses, are compared. The aim is to elucidate assumptions inherent in different approaches, and to clarify associated physical interpretations of stress. Following a critical analysis and extension of the virial approach, a method of spatial atomistic averaging (at any prescribed length scale) is presented and a balance of linear momentum is derived. The contribution of corpuscular interactions is represented by a force density field f. The balance relation reduces to standard form when f is expressed as the divergence of an interaction stress tensor field, T . The manner in which T can be defined is studied, since T is unique only to within a divergence-free field. Three distinct possibilities are discussed and critically compared. An approach to nanoscale systems is suggested in which f is employed directly, so obviating separate modelling of interfacial and edge effects.   相似文献   

20.
We discuss the roles of continuum linear elasticity and atomistic calculations in determining the formation volume and the strain energy of formation of a point defect in a crystal. Our considerations bear special relevance to defect formation under stress. The elasticity treatment is based on the Green's function solution for a center of contraction or expansion in an anisotropic solid. It makes possible the precise definition of a formation volume tensor and leads to an extension of Eshelby's [Proc. R. Soc. London Ser. A 241 (1226), 376] result for the work done by an external stress during the transformation of a continuum inclusion. Parameters necessary for a complete continuum calculation of elastic fields around a point defect are obtained by comparing with an atomistic solution in the far field. However, an elasticity result makes it possible to test the validity of the formation volume that is obtained via atomistic calculations under various boundary conditions. It also yields the correction term for formation volume calculated under these boundary conditions. Using two types of boundary conditions commonly employed in atomistic calculations, a comparison is also made of the strain energies of formation predicted by continuum elasticity and atomistic calculations. The limitations of the continuum linear elastic treatment are revealed by comparing with atomistic calculations of the formation volume and strain energies of small crystals enclosing point defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号