首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete two-dimensional square- and triangular-cell lattices consisting of point particles connected by bistable bonds are considered. The bonds follow a trimeric piecewise linear force-elongation diagram. Initially, Hooke's law is valid as the first branch of the diagram; then, when the elongation reaches the critical value, the tensile force drops to the other. The latter branch can be parallel with the former (mathematically this case is simpler) or have a different inclination. For a prestressed lattice the dynamic transition is found analytically as a wave localized between two neighboring lines of the lattice particles. The transition wave itself and dissipation waves carrying energy away from the transition front are described. The conditions are determined which allow the transition wave to exist. The transition wave speed as a function of the prestress is found. It is also found that, for the case of the transition leading to an increased tangent modulus of the bond, there exists nondivergent tail waves exponentially localized in a vicinity of the transition line behind the transition front. The previously obtained solutions for crack dynamics in lattices appear now as a partial case corresponding to the second branch having zero resistance. At the same time, the lattice-with-a-moving-crack fundamental solutions are essentially used here in obtaining those for the localized transition waves in the bistable-bond lattices. Steady-state dynamic regimes in infinite elastic and viscoelastic lattices are studied analytically, while numerical simulations are used for the related transient regimes in the square-cell lattice. The numerical simulations confirm the existence of the single-line transition waves and reveal multiple-line waves. The analytical results are compared to the ones obtained for a continuous elastic model and for a related version of one-dimensional Frenkel-Kontorova model.  相似文献   

2.
We investigated the mechanical behavior of two-dimensional hierarchical honeycomb structures using analytical, numerical and experimental methods. Hierarchical honeycombs were constructed by replacing every three-edge vertex of a regular hexagonal lattice with a smaller hexagon. Repeating this process builds a fractal-appearing structure. The resulting isotropic in-plane elastic properties (effective elastic modulus and Poisson’s ratio) of this structure are controlled by the dimension ratios for different hierarchical orders. Hierarchical honeycombs of first and second order can be up to 2.0 and 3.5 times stiffer than regular honeycomb at the same mass (i.e., same overall average density). The Poisson’s ratio varies from nearly 1.0 (when planar ‘bulk’ modulus is considerably greater than Young’s modulus, so the structure acts ‘incompressible’ for most loadings) to 0.28, depending on the dimension ratios. The work provides insight into the role of structural organization and hierarchy in regulating the mechanical behavior of materials, and new opportunities for developing low-weight cellular structures with tailorable properties.  相似文献   

3.
In this paper, the authors return to the classical problem of crack propagation in a lattice. The authors study the problems concerned with the possible regimes of stable steady-state crack propagation in an anisotropic lattice. They show that the steady-state crack propagation is impossible for some relations between the strength and elastic properties of the lattice. The authors also discuss the possibility of stable crack propagation at low speeds.  相似文献   

4.
In this paper we study analytically the elastic properties of the 2-D and 3-D regular lattices consisting of bonded particles. The particle-scale stiffnesses are derived from the given macroscopic elastic constants (i.e. Young's modulus and Poisson's ratio). Firstly a bonded lattice model is presented. This model permits six kinds of relative motion and corresponding forces between each bonded particle pair. By comparing the strain energy distributions between the discrete lattices and the continuum, the explicit relationship between the microscopic and macroscopic elastic parameters can be obtained for the 2-D hexagonal lattice and the 3-D hexagonal close-packed and face-centered cubic structures. The results suggest that the normal stiffness is determined by Young's modulus and the particle size (in 3-D), and that the ratio of the shear to normal stiffness is related to Poisson's ratio. Rotational stiffness depends on the normal stiffness, shear stiffness and particle sizes. Numerical tests are carried out to validate the analytical results. The results in this paper have theoretical implications for the calibration of the spring stiffnesses in the Discrete Element Method.  相似文献   

5.
An analytical elastic-perfectly plastic contact model   总被引:1,自引:0,他引:1  
A new formulation for elastic-perfectly plastic contact in the normal direction between two round surfaces that is solely based on material properties and contact geometries is developed. The problem is formulated as three separate domains: the elastic regime, mixed elastic–plastic behavior, and unconstrained (fully plastic) flow. Solutions for the force–displacement relationship in the elastic regime follow from Hertz’s classical solution. In the fully plastic regime, two well supported assumptions are made: that there is a uniform pressure distribution and there is a linear force–deflection relationship. The force–displacement relationship in the intermediate, mixed elastic–plastic regime is approximated by enforcing continuity between the elastic and fully plastic regimes. Transitions between the three regimes are determined based on empirical quantities: the von Mises yield criterion is used to determine the initiation of mixed elastic–plastic deformation, and Brinell’s hardness for the onset of unconstrained flow. Unloading from each of these three regimes is modeled as an elastic process with different radii of curvature based on the regime in which the maximum force occurred. Simulation results explore the relationship between the impact velocity and coefficient of restitution. Further comparisons are made between the model, experimental results found in the literature, and other existing elastic–plastic models. The new model is well supported by the experimental measurements of compliance curves for elastic–plastic materials and of coefficients of restitution from impact studies, and in elastic-perfectly plastic regimes is demonstrated to be more accurate than existing models found in the literature.  相似文献   

6.
The article addresses the elastodynamic behaviour of a ‘shear-type structured’ interface separating two elastic regions. The structure includes a system of horizontal elastic bars connected by transverse massless elastic links. For a plane wave transmission problem, the analytical results obtained here show that such an interface acts as a ‘shear polariser’. A special attention is paid to the analysis of the defect modes (also referred to as resonance modes) within the interface. It is shown that these vibration modes induce enhanced transmission within the elastic system.  相似文献   

7.
Three-dimensional (3D) textile composites have great potential applications to aircrafts and high speed vehicles because of the high strength/weight ratios and the capabilities of manufacturing complex, net-shape preforms. This paper reports the nonlinear viscoelastic responses and damage mechanisms of one kind of 3D textile composites, named as 3D orthogonal woven composite (3DOWC) under quasi-static tensile loading based on a micro/meso-scale repetitive unit cells (RUCs) model. In the RUCs model, the resin is described with a nonlinear viscoelastic material and the fibers/tows with an elastic material. The damage initiation and propagation in resin are simulated by the post-damage constitutive models with maximum principal theory failure criteria. The fibers/tows impregnated with resin are defined by elastic transverse-isotropic material model with ultimate strengths failure of ‘expanded smeared crack’ both along and perpendicular to fibers/tows axis direction. The engineering parameters and ultimate strengths of homogenized fibers/tows filled with matrix in meso-RUCs model are transferred from the numerical analysis of the micro-RUCs. The results are compared with experimental and theoretical values of RUC deformation and damage initiation and propagation under monotonic axial loading. The methodology of establishing the nonlinear visco-elastic multi-scale model of 3D textile composites without introducing the real fabric architecture in finite element analyses is explained. With the multi-scale RUCs model, the mechanical behaviors of other kinds of 3D textile composites can also be predicted.  相似文献   

8.
This paper describes flow around a pair of cylinders in tandem arrangement with a downstream cylinder being fixed or forced to oscillate transversely. A sinusoidal parietal velocity is applied to simulate cylinder oscillation. Time-dependent Navier-Stokes equations are solved using finite element method. It is shown that there exist two distinct flow regimes: ‘vortex suppression regime’ and ‘vortex formation regime’. Averaged vortex lengths between the two cylinders, pressure variations at back and front stagnant points as well as circumferential pressure profiles of the downstream cylinder are found completely different in the two regimes and, thus, can be used to identify the flow regimes. It is shown that frequency selection in the wake of the oscillating cylinder is a result of non-linear interaction among vortex wakes upstream and downstream of the second cylinder and its forced oscillation. Increasing cylinder spacing results in a stronger oscillatory incident flow upstream of the second cylinder and, thus, a smaller synchronization zone.  相似文献   

9.
The purpose of the study is to investigate the influence of porosity and void size on effective elastic geotechnical engineering properties with a 3D model of random fields and finite element. The random field theory is used to generate models of geomaterials containing spatially random voids with controlled porosity and void size. A “tied freedom” analysis is developed to evaluate the effective Young’s modulus and Poisson’s ratio in an ideal block material of finite elements. To deliver a mean and standard deviation of the elastic parameters, this approach uses Monte-Carlo simulations and finite elements, where each simulation leads to an effective value of the property under investigation. The results are extended to investigate an influence of representative volume element (RVE). A comparison of the effective elastic stiffness of 2D and 3D models is also discussed.  相似文献   

10.
The effect of transverse shear on delamination in layered, isotropic, linear-elastic materials has been determined. In contrast to the effects of an axial load or a bending moment on the energy-release rate for delamination, the effects of shear depend on the details of the deformation in the crack-tip region. It therefore does not appear to be possible to deduce rigorous expressions for the shear component of the energy-release rate based on steady-state energy arguments or on any type of modified beam theory. The expressions for the shear component of the energy-release rate presented in this work have been obtained using finite-element approaches. By combining these results with earlier expressions for the bending-moment and axial-force components of the energy-release rates, the framework for analyzing delamination in this type of geometry has been extended to the completely general case of any arbitrary loading. The relationship between the effects of shear and other fracture phenomena such as crack-tip rotations, elastic foundations and cohesive zones are discussed in the final sections of this paper.  相似文献   

11.
Residual elastic strains in a bent bar of titanium alloy Ti-6Al-4V were measured using high energy diffraction on station 16.3 at SRS Daresbury. Using a single bounce Laue crystal monochromator, diffraction peaks were collected for reflections (00.2), (10.1), (10.2) and (11.0) from the hcp alpha phase of the titanium alloy. Reference values of the lattice spacing for each of the reflections were found from the diffraction pattern collected from a stress-free sampling volume. The residual elastic strain values calculated on the basis of each reflection were then computed and plotted as a function of position across the bent bar. The average macroscopic residual elastic strain was computed using an averaging procedure taking into account the multiplicity of each reflection. Energy dispersive white beam diffraction from the same bent bar was used to collect diffraction patterns over the range of lattice spacings between 0.8 and 2.2 Å. Detector calibration was carried out using the procedure described in Liu et al. (2005) and detailed interpretation of the energy dispersive profiles was carried out allowing the identification of average residual elastic strains in the two principal phases present in the titanium alloy considered, the α-Ti hcp and the β-Ti bcc phases. Peak-specific residual strain profiles computed on the basis of monochromatic measurements show significant differences reflecting the variation in the elastic and plastic properties with grain orientation, i.e., crystal anisotropy. Using the contrast between the elastic and plastic properties of different directions within the α-Ti hcp lattice, the difference between residual elastic strains measured for (00.2) and (11.0) reflections was plotted, as well as the ‘difference strain’ between (00.2) and (10.1) reflections. These profiles show a good qualitative correlation with the plastic strain profile introduced by inelastic bending that was computed from the analysis of Pawley refinement of the energy-dispersive diffraction measurements.  相似文献   

12.
In order to determine the effect of finite deformations on the stability and non-linear time-deflection behaviour of linearly viscoelastic uniaxially stressed structures, a series of simple rigid-bar-spring dashpot models were analysed ‘exactly’. The material representation was also kept as simple as possible using the standard three-element solid model.Results obtained indicate that the relaxation behaviour of such a structure depends only on its material properties. The creep response is influenced not only by the load level but most significantly by the instantaneous non-linear elastic characteristics of the structure. For structures exhibiting instantaneous elastic local instability a ‘critical time’ may be defined beyond which equilibrium is impossible. The definition for ‘safe-load-limit’ or viscoelastic critical force usually used in linear stability analyses of viscoelastic columns is generalized.  相似文献   

13.
Propagation of elastic phononic waves in layered composite materials is analyzed by introducing nonsmooth periodic coordinates associated with structural specifics of the materials. Spatial scales of the original (smooth) coordinates are estimated by the wave lengths. In terms of the new coordinates, the homogenization procedure occurs naturally from the continuity conditions imposed on elastic displacements and forces at layer interfaces. As a result, higher-order asymptotic approximations describing spatiotemporal ‘macro’- and ‘micro’-effects of wave propagation are obtained in closed form. Such solutions provide visualizations for the wave shapes illustrating their structure induced local details. In particular, beat-wise mode shapes and effective anisotropy of acoustic wave propagation are revealed. The subharmonic beating in wave modes occur when wave lengths orthogonal to layers is about to ‘resonate’ with layer’ thickness. If the wave speed has a non-zero projection along the layers, then phase shifts between the beats are observed in different cross sections perpendicular to the layers.  相似文献   

14.
This paper is concerned with the elastic plastic response of a two-bar system with temperature-dependent elastic coefficients under cyclic thermomechanical loadings. Such materials are characterized by lack of results concerning the asymptotic behaviors and conditions for shakedown occurrence. This study shows that the considered simple structure is sufficiently complex to experience different periodic long-term behaviors as in classical elastoplasticity. In order to understand how Melan–Koiter method works for such materials, the evolution of the structure’s response until the stabilization of the plastic strain (‘shakedown’) or the asymptotic dissipative behavior (‘alternating plasticity’ or ‘ratcheting’) is analytically addressed and the Bree diagram is then constructed. The main result of this work is that the residual stress and strain fields are time-dependent even when shakedown occurs. Besides, we proved that Halphen’s conjecture (Halphen, 2005) giving a sufficient condition for shakedown occurrence is not a necessary condition. Finally, numerical results performed by an incremental finite element procedure are presented.  相似文献   

15.
Previous atomistic simulations and experiments have shown an increased Young's modulus and yield strength of fivefold twinned (FT) face-centered cubic metal nanowires (NWs) when compared to single crystalline (SC) NWs of the same orientation. Here we report the results of atomistic simulations of SC and FT Ag, Al, Au, Cu and Ni NWs with diameters between 2 and 50 nm under tension and compression. The simulations show that the differences in Young's modulus between SC and FT NWs are correlated with the elastic anisotropy of the metal, with Al showing a decreased Young's modulus. We develop a simple analytical model based on disclination theory and constraint anisotropic elasticity to explain the trend in the difference of Young's modulus between SC and FT NWs. Taking into account the role of surface stresses and the elastic properties of twin boundaries allows to account for the observed size effect in Young's modulus. The model furthermore explains the different relative yield strengths in tension and compression as well as the material and loading dependent failure mechanisms in FTNWs.  相似文献   

16.
Closed-form time-domain expressions are obtained for the particle displacement of the elastic wave motion generated by a two-dimensional SH-wave line source and reflected and transmitted by a planar, elastic bonding interface of two homogeneous, isotropic, semi-infinite, perfectly elastic solids. The properties of the elastic bonding interface are characterized by a matrix of ‘spring coefficients’ through which the traction on each of the two faces is linearly related to the particle displacement of either of the two faces. The solution is constructed with the aid of (an extension of) the modified Cagniard method. The obtained solution of the forward model is believed to be of importance to the inverse problem that aims at reconstructing the elements of the matrix of ‘spring coefficients’ from measured values of the reflected and/or the transmitted wavefield quantities at a number of positions.  相似文献   

17.
Multiphase lattice blocks with periodic structure are analyzed by a continuum-based micromechanical approach. As a result, effective stiffness tensors, global initial yield surfaces, global damage thresholds, effective inelastic stress–strain responses and critical yielding temperatures of lattice blocks are established. Applications are given for various types of elastic and inelastic lattice blocks made of an aluminum alloy. Furthermore, a lattice block with negative effective Poisson’s ratios is considered, and two types of two-phase lattice blocks that are capable to produce negative effective coefficients of thermal expansion are presented.  相似文献   

18.
This paper presents an attempt to extend homogenization analysis for the effective elastic moduli of triangular lattice materials with microstructural defects. The proposed homogenization method adopts a process based on homogeneous strain boundary conditions, the micro-scale constitutive law and the micro-to-macro static operator to establish the relationship between the macroscopic properties of a given lattice material to its micro-discrete behaviors and structures. Further, the idea behind Eshelby’s equivalent eigenstrain principle is introduced to replace a defect distribution by an imagining displacement field (eigendisplacement) with the equivalent mechanical effect, and the triangular lattice Green's function technique is developed to solve the eigendisplacement field. The proposed method therefore allows handling of different types of microstructural defects as well as its arbitrary spatial distribution within a general and compact framework. Analytical closed-form estimations are derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-dominated triangular lattices containing fractured cell walls and missing cells, respectively. Comparison with numerical results, the Hashin–Shtrikman upper bounds and uniform strain upper bounds are also presented to illustrate the predictive capability of the proposed method for lattice materials. Based on this work, we propose that not only the effective Young’s and shear moduli but also the effective Poisson’s ratio of triangular lattice materials depend on the number density of fractured cell walls and their spatial arrangements.  相似文献   

19.
This paper proposes a pseudo-potential describing slit flow in the formalism of lattice Monte Carlo simulation with the bond fluctuation algorithm as the unique basic micro-relaxation mode. The main characteristics of slit flow, such as the parabolic velocity profile and the pressure-flux relationship, are successfully reproduced in a three-dimensional self-avoiding multi-chain system. Both Newtonian and non-Newtonian regimes are revealed. The chain conformation and nonlinear rheological behavior are investigated. The simulation results agree with experimental measurements. This method can be used to investigate the viscoelastic properties at different layers as well as the global properties. Some peculiar phenomena in inhomogeneous flow are found to be consistent with previous theoretical predictions by others. Received: 20 April 1999/Accepted: 22 July 1999  相似文献   

20.
A three-dimensional lattice model is constructed to theoretically study the size effects on the elastic properties of ultrathin films with face-center-cubic crystal structure. The lattice model directly takes the discrete nature in the thickness direction into account and treats the deformations along the film plane with continuum mechanics. Only the interactions between the nearest and second nearest atoms are considered in this model and represented as harmonic springs. The constitutive relation of the ultrathin film is then derived using the energy approach and the analytical expressions of the elastic moduli of ultrathin films, including in-plane, out-plane Young’s modulus and Poisson’s ratio, are obtained. Moreover, the analytical expressions of ultrathin films with different crystal orientations are also formulated. It is shown that the ultrathin film along in-plane directions may be stiffer or softer than its bulk counterpart, but it is always softer along the out-plane direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号