首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over flat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were and , dust loading ratios were and , and particle diameters were and {\rm \mu}$m. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure histories were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension. Received 15 November 1999 / Accepted 25 October 2000  相似文献   

2.
The generalized Riemann problem for gas dynamic combustion in a neighborhood of the origin t > 0 in the (x, t) plane is considered. Under the modified entropy conditions, the unique solutions are constructed, which are the limits of the selfsimilar Zeldovich-von Neumann-Dring (ZND) combustion model. The results show that, for some cases, there are intrinsical differences between the structures of the perturbed Riemann solutions and the corresponding Riemann solutions. Especially, a strong detonation in the...  相似文献   

3.
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values. The project supported by the National Natural Science Foundation of China (90205024) and Russian Foundation for Basic Research (RFBR and (RFBR-NSFC-39004) The English text was polished by Yunming Chen  相似文献   

4.
With an extended Langmuir isotherm, a Riemann problem for one-dimensional binary gas enhanced coalbed methane (ECBM) process is investigated. A new analytical solution to the Riemann problem, based on the method of characteristics, is developed by introducing a gas selectivity ratio representing the gas relative sorption affinity. The influence of gas selectivity ratio on the enhanced coalbed methane processes is identified.  相似文献   

5.
B. M. Argrow 《Shock Waves》1996,6(4):241-248
Nonclassical phenomena associated with the classical dynamics of real gases in a conventional shock tube are studied. A TVD predictor-corrector (TVD-MacCormack) scheme with reflective endwall boundary conditions is used for the one-dimensional Euler equations to simulate the evolution of the wave field of a van der Waals gas. Depending upon the initial conditions of the gas, wave fields are produced that contain nonclassical phenomena such as expansion shocks, composite waves, splitting shocks, etc. In addition, the interactions of waves reflected from the endwalls produce both classical and nonclassical phenomena. Wave field evolution is depicted using plots of the flow variables at specific times and withx-t diagrams.  相似文献   

6.
This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a degenerate shock under the generalized shock condition, the global solutions are constructively obtained case by case.  相似文献   

7.
The head-on collision of a planar shock wave with a dust-air suspension is studied numerically. In this study the suspension is placed inside a conduit adjacent to its rigid end-wall. It is shown that as a result of this collision two different types of transmitted shock waves are possible, depending on the strength of the incident shock wave and the dust loading ratio in the suspension. One possibility is a partially dispersed shock wave, the other is a compression wave. The flow fields resulting in these two options are investigated. It is shown that in both cases, at late times after the head-on reflection of the transmitted shock wave from the conduit end-wall a negative flow (away from the end-wall) is evident. The observed flow behavior may suggest a kind of dust particle lifting mechanism that could shed new light on the complex phenomenon of dust entrainment behind sliding shock waves.   相似文献   

8.
This article is to continue the present author's work (International Journal of Computational Fluid Dynamics (2009) 23 (9), 623–641) on studying the structure of solutions of the Riemann problem for a system of three conservation laws governing two-phase flows. While existing solutions are limited and found quite recently for the Baer and Nunziato equations, this article presents the first instance of an exact solution of the Riemann problem for two-phase flow in gas–liquid mixture. To demonstrate the structure of the solution, we use a hyperbolic conservative model with mechanical equilibrium and without velocity equilibrium. The Riemann problem solution for the model equations comprises a set of elementary waves, rarefaction and discontinuous waves of various types. In particular, such a solution treats both the wave structure and the intermediate states of the two-phase gas–liquid mixture. The resulting exact Riemann solver is fully non-linear, direct and complete. On this basis then, we use locally the exact Riemann solver for the two-phase flow in gas–liquid mixture within the framework of finite volume upwind Godunov methods. In order to demonstrate the effectiveness and accuracy of the proposed solver, we consider a series of test problems selected from the open literature and compare the exact and numerical results by using upwind Godunov methods, showing excellent oscillation-free results in two-phase fluid flow problems.  相似文献   

9.
Similarity solutions are obtained for unsteady, one-dimensional self-similar flow behind a strong shock wave, driven by a moving piston, in a dusty gas. The dusty gas is assumed to consist of a mixture of small solid particles and a non-ideal gas, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston. Solutions are obtained under both the isothermal and adiabatic conditions of the flow-field. The spherical case is worked out in detail to investigate to what extent the flow-field behind the shock is influenced by the non-idealness of the gas in the mixture as well as by the mass concentration of the solid particles, by the ratio of density of the solid particles to the initial density of the mixture and by the energy input due to moving piston. A comparison is also made between isothermal and adiabatic cases.  相似文献   

10.
We consider the Riemann problem for a five-equation, two-pressure (5E2P) model of non-ideal isentropic compressible gas–liquid two-phase flows. This system is more complex due to the extended thermodynamics model for van der Waals gases, that is, typical real gases for gas phase and Tait׳s equation of state for liquid phase. The overall model is strictly hyperbolic and non-conservative form. We investigate the structure of Riemann problem and construct the solution for it. To construct solution of Riemann problem approximately assuming that all waves corresponding to the genuinely non-linear characteristic fields are rarefaction and then we discuss their properties. Lastly, we discuss numerical examples and study the solution influenced by the van der Waals excluded volume.  相似文献   

11.
In this paper, we concern about the Riemann problem for compressible no-slip drift-flux model which represents a system of quasi-linear partial differential equations derived by averaging the mass and momentum conservation laws with modified Chaplygin two-phase flows. We obtain the exact solution of Riemann problem by elaborately analyzing characteristic fields and discuss the elementary waves namely, shock wave, rarefaction wave and contact discontinuity wave. By employing the equality of pressure and velocity across the middle characteristic field, two nonlinear algebraic equations with two unknowns as gas density ahead and behind the middle wave are formed. The Newton–Raphson method of two variables is applied to find the unknowns with a series of initial data from the literature. Finally, the exact solution for the physical quantities such as gas density, liquid density, velocity, and pressure are illustrated graphically.  相似文献   

12.
Abstract. An approximate solution of the Riemann problem associated with a realisable and objective turbulent second-moment closure, which is valid for compressible flows, is examined. The main features of the continuous model are first recalled. An entropy inequality is exhibited, and the structure of waves associated with the non-conservative hyperbolic convective system is briefly described. Using a linear path to connect states through shocks, approximate jump conditions are derived, and the existence and uniqueness of the one-dimensional Riemann problem solution is then proven. This result enables to construct exact or approximate Riemann-type solvers. An approximate Riemann solver, which is based on Gallou?t's recent proposal is eventually presented. Some computations of shock tube problems are then discussed. Received 2 March 1999 / Accepted 24 August 2000  相似文献   

13.
In this paper we have studied the behavior of wave motion as propagating wavelets and their culmination into shock waves in a non-ideal gas with dust particles. In the absence of non-ideal effect the gas satisfies an equation of state of Mie–Gruneisen type. An expansion wave resulting from the action of receding piston is considered and the solutions to this problem showing effects of dust particles and non-idealness are obtained. The propagation of weak waves is considered and the flow variables in the region bounded by the piston and the characteristic wave front are found out. The expansive action of a receding piston undergoing an abrupt change in velocity is discussed. Cases of central expansion fan and shock fronts are studied and the solutions up to first order in the physical plane are obtained. The effects of non-idealness and dust particles are discussed in each case.  相似文献   

14.
Self-similar solutions to the Riemann problem for water with the modified Tait equation of state are presented. The methods of Smoller for gas dynamics are employed to reduce the problem to the solution of a single non-linear equation. The same methods are used for solving the Riemann problem at a gas-water interface. In both cases the method of interval bisections affords a solution technique free of problems with convergence.  相似文献   

15.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Stokes’ second problem for a dusty second-grade gas, assumed incompressible, is considered. Exact solutions for both the gas and dust phases are determined and examined. In addition, low- and high-frequency asymptotic results are presented for the main propagation parameters, limitations imposed by the continuum assumption are determined, and special cases of the coefficients are noted. Finally, Stokes’ first problem for a dusty second-grade gas is briefly considered and we then apply our findings to an issue regarding dipolar fluids.  相似文献   

17.
E. F. Toro 《Shock Waves》1995,5(1-2):75-80
Approaches for finding direct, approximate solutions to the Riemann problem are presented. These result in three approximate Riemann solvers. Here we discuss the time-dependent Euler equations but the ideas are applicable to other systems. The approximate solvers are (i) assessed on local Riemann problems with exact solutions and (ii) used in conjunction with the Weighted Average Flux (WAF) method to solve the two-dimensional Euler equations numerically. The resulting numerical technique is assessed on a shock reflection problem. Comparison with experimental observation is carried out.  相似文献   

18.
We develop an Eulerian fixed grid numerical method for calculating multi‐material fluid flows. This approach relates to the class of interface capturing methods. The fluid is treated as a heterogeneous mixture of constituent materials, and the material interface is implicitly captured by a region of mixed cells that have arisen owing to numerical diffusion. To suppress this numerical diffusion, we propose a composite Riemann problem (CRP), which describes the decay of an initial discontinuity in the presence of a contact point between two different fluids, which is located off the initial discontinuity point. The solution to the CRP serves to calculate multi‐material no mixed numerical flux without introducing any material diffusion. We discuss the CRP solution and its implementation in the multi‐material fluid Godunov method. Numerical results show that a simple framework of the CRP greatly improves capturing material interfaces in the Godunov method and reproduces many of the advantages of more complicated interface tracking multi‐material treatments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The aims of this paper are threefold: to increase the level of awareness within the shock-capturing community of the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very-high-resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.  相似文献   

20.
In a previous paper (Transp. Porous Media,55(1): 47–70), algorithms are given for computing the analytical solution to the three-phase Riemann problem. Application of those algorithms requires that the wave configuration is known. The purpose of this note is to provide a procedure to determine the wave structure for any initial and injected saturation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号