首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present the time-dependent synthesis of cobalt hydroxide carbonate nanorods by hydrothermal method with a systematic increase of different parameters such as specific surface area and specific capacitance as a function of different synthesis time. Morphological characterization of the cobalt hydroxide carbonate nanorods were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that variation of the time of reaction plays a crucial role in the transformation of samples’ morphology. Cobalt hydroxide carbonate nanorods synthesized with 12 h reaction time, which is the reaction just before the materials transforms into cobalt oxide under the same synthesis conditions exhibited the highest specific capacitance of 466 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte and also showed excellent stability with ∼99% capacitance retention after 2000 cycles at a current density of 10 A g−1. Based on the above results, the cobalt hydroxide carbonate nanorods show a considerable potential as electrodes materials for supercapacitor applications.  相似文献   

2.
Bamboo-based activated carbon is synthesized by a simple heat treatment with or without KOH activation, and characterized for possible energy storage applications. The KOH activation introduces a very large surface area of more than 3000 m2 g−1 to the bamboo-based activated carbon, resulting in high specific capacitance, energy density, and power density in an aqueous electrolyte. The specific capacitance retention is more than 91% of the original capacitance after 3000 cycles, proving excellent cyclic stability for supercapacitor applications. Our results indicate that the natural resource of common bamboo could be an essential raw material for the energy storage devices.  相似文献   

3.
Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and it was activated with KOH to obtain activated carbon aerogel (ACA). Specific capacitance of carbon aerogel and activated carbon aerogel was measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Activated carbon aerogel showed higher specific capacitance than carbon aerogel (136 F/g vs. 90 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% manganese oxide was doped on activated carbon aerogel by an incipient wetness impregnation method. For comparison, 7 wt% manganese oxide was also doped on carbon aerogel by an incipient wetness impregnation method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/CA) (168 F/g vs. 98 F/g). The enhanced capacitance of 7 wt% Mn-doped activated carbon aerogel was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.  相似文献   

4.
The fabrication of high performance supercapacitor electrodes has been greatly investigated for future high power storage applications. In this present work, chromium oxide-cobalt oxide based nanocomposite (Cr2O3–Co3O4 NC) was synthesized using the hydrothermal approach. Moreover, the cyclic voltammetry (CV) study reveals the Cr2O3–Co3O4 NC delivers a high specific capacitance of 619.4 F/g at 10 mV/s. The electrochemical impedance spectra (EIS) of Cr2O3–Co3O4 NC possess the solution resistance (Rs) and charge transfer resistance (Rct) of 0.68 Ω and 0.03 Ω respectively. The Galvanostatic charge-discharge (GCD) analysis demonstrated the prolonged charge-discharge time and good rate capability of the Cr2O3–Co3O4 NC. The cyclic stability of Cr2O3–Co3O4 NC delivers superior capacitive retention of 83% even after 2000 cycles. The asymmetric supercapacitor (ASC) device based on Cr2O3–Co3O4//AC yielded an energy density of 4.3 Wh/kg at the corresponding power density of 200 W/kg. Furthermore, the ASC delivers superior cyclic stability of 74.8% even after 1000 consecutive charge-discharge cycles.  相似文献   

5.
Present work explored a room temperature, simple and low cost chemical route for the cobalt oxide film onto copper substrate from cobalt chloride (CoCl2·6H2O) precursor and characterization for its structural and electrochemical properties for supercapacitor application. The morphology and crystal structure of the film were investigated by scanning electron microscopy and X-ray diffraction techniques, respectively. The electrochemical supercapacitive properties of cobalt oxide film were evaluated using cyclic voltammetry and galvanostatic charge-discharge methods. The film showed maximum specific capacitance of (165 F/g) in 1.0 M aqueous KOH electrolyte at scan rate 10 mV/s.  相似文献   

6.
Although onion-like carbon nanostructures (OLCs) are attractive materials for energy storage, their commercialization is hampered by the absence of a simple, cost-effective, large-scale synthesis route and binder-free electrode processing. The present study employs a scalable and straightforward technique to fabricate sonochemically tailored OLCs-based high-performance supercapacitor electrode material. An enhanced supercapacitive performance was demonstrated by the OLCs when sonicated in DMF at 60 °C for 15 min, with a specific capacitance of 647 F/g, capacitance retention of 97% for 5000 cycles, and a charge transfer resistance of 3 Ω. Furthermore, the OLCs were employed in the electrochemical quantification of methylene blue, a potential COVID-19 drug. The sensor demonstrated excellent analytical characteristics, including a linear range of 100 pM to 1000 pM, an ultralow sensitivity of 64.23 pM, and a high selectivity. When used to identify and quantify methylene blue in its pharmaceutical formulation, the sensor demonstrated excellent reproducibility, high stability, and satisfactory recovery.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

8.
论述了活性炭超级电容器材料充放电性能的测试方法步骤和测试结果,在此基础上,通过模拟,确定放电电流随时间的变化规律.建立物理模型,用固体物理理论,从微观角度研究材料的电阻随温度的变化,进而得到活性炭超级电容器材料放电电流强度随温度和放电时间变化规律的解析式,探讨材料原子的非简谐振动对电极材料放电性能的影响.结果表明:(1)电极材料放电电流随时间的变化并不遵从将它作为线性元件处理时的按时间的负指数规律变化,而是非线性减小,减小的情况与温度有关;(2)活性炭超级电容器材料的电阻随温度升高而增大.增大情况与原子振动情况有关:将原子振动作简谐近似处理时,材料的电阻的倒数几乎与温度成反比,考虑到原子非振动后,其电阻随温度升高而增大的情况加剧,温度愈高,非简谐振动项的影响愈大;(3)本文提出的物理模型和采用的理论,能对活性炭超级电容器电极材料放电性能进行有效的研究.  相似文献   

9.
Activated carbon (AC) has been widely used in water treatment because of its rich pore structure, large specific surface area, simple production process, low preparation cost and wide source of raw materials. In this paper, the regeneration efficiency of low-frequency ultrasonic pretreatment (40 kHz, 115Μw/cm3) on biological activated carbon (BAC) is investigated, and its principle is discussed. The results show that the micro-jet and micro-liquid flow with high temperature and pressure produced by micro-bubble rupture during ultrasonic cavitation play an important role in the regeneration of activated carbon. And optimum ultrasonic treatment time is determined (5 min). In addition, the preparation of cu-loaded activated carbon by ultrasound-microwave method is investigated to pretreat wastewater produced in paracetamol production. The results show that Cu and Cu oxides can be loaded on activated carbon surface by ultrasonic-microwave pretreatment. Finally, the pretreatments of activated carbon by physical, chemical and physical–chemical method are investigated. The effects of the above different pretreatment methods on the structure and adsorption properties of activated carbon are compared and evaluated  相似文献   

10.
The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pHpzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pHpzc ranges between 3.6 and 10.3.  相似文献   

11.
Enteromorpha prolifera was pyrolyzed to prepare activated carbon using chemical activation by zinc chloride. The effect of activation parameters such as activation temperature, weight ratio (Enteromorpha prolifera to ZnCl2), and activation time was investigated. The BET results showed that the surface area and pore volume of activated carbons were achieved as high as 1722 m2/g and 1.11 cm3/g, respectively, in the optimal activation conditions. Batch adsorption studies were carried out to study the adsorption properties of cationic red X-GRL onto activated carbon by varying the parameters like initial solution pH, contact time, and temperature. The kinetic studies showed that the adsorption data followed a pseudo second-order model. The isotherm analysis indicated that the adsorption data could be represented by the Langmuir isotherm model. The Langmuir monolayer adsorption capacity of cationic red X-GRL was estimated as 263.16 mg/g at pH 6.0.  相似文献   

12.
为了选择用于核聚变研究领域中在氢、氦气环境下的低温吸附泵所用的吸附剂,在初步筛选基础上,比对了4种椰基活性炭材料。采用扫描电镜对材料微观结构进行了扫描,用比表面积及孔径分析仪测定了等温吸附性能,最终获得了活性炭样本的比表面积、微孔比表面积份额、不同孔径所对应的孔容等性能数据;通过对实验结果的比对分析,为筛选适用于核聚变研究环境下低温吸附泵使用的吸附剂材料,提供了重要的实验数据。  相似文献   

13.
Adsorption and electrochemical studies were carried out on three activated carbon samples first oxidized, then heat-treated under vacuum (at 180, 500 and 900 °C). The investigations were performed with aqueous electrolyte (Na2HPO4 and H3PO4) solutions containing selected nonpolar organics (benzene and n-hexane). Adsorption measurements were carried out on solution with a wide range of organics concentration (up to saturation point). Cyclovoltammetric curves of powdered electrodes prepared from the activated carbon samples were recorded for the organics in saturated solutions. The electric double layer capacities of the anodic and cathodic parts were estimated, and the surface anodic and cathodic charge was calculated both in absence and presence of organics in the electrochemical systems. The relative surface charge (in relation to systems without organics) was found to decrease with a reduction in the concentration of surface oxygen-containing groups. Other physicochemical parameters characterizing the degree of surface oxidation (total oxygen concentration, primary water adsorption centres) were also taken into consideration. The correlation between adsorption capacity towards the nonpolar organic compounds (obtained from adsorption isotherms) and change of surface charge was analyzed.  相似文献   

14.
In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m2 g−1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m2 g−1 and 0.329 cm3 g−1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.  相似文献   

15.
The hydrophobisation of commercial viscose-based activated carbon fiber (ACF) was obtained by grafting vinyltrimethoxysilane (vtmos) on the ACF surface, to improve ACF's adsorption selectivity towards carbon disulfide (CS2) under highly humid condition. The characterizations, including FTIR, 29Si NMR, adsorption/desorption of nitrogen, thermal analysis and elemental analysis, revealed that the vtmos was successfully grafted onto the ACF surface, even though the hydrophobisation caused a partial filling of the porosity along with a slight decrease in the surface area. The efficiency of the hydrophobisation modification was evaluated by both equilibrium and dynamic adsorption experiment of water vapor and CS2. The equilibrium adsorption results indicated that the hydrophobisation modifications accounted for a decrease of both the amounts of water and CS2 adsorbed by the hydrophobised ACF. However, dynamic adsorption found that the adsorption performance was improved under highly humid condition, evidencing that hydrophobisation improved the hydrophobicity of the ACF surface and enhanced the adsorption selectivity towards CS2.  相似文献   

16.
Cobalt nanoparticles coated with zinc oxide can form composite spheres with core-shell structure. This coating process was based on the use of silane coupling with agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the cobalt surface vitreophilic, thus it renders cobalt surface compatible with ZnO. X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. The morphological structure, chemical composition, optical properties and magnetic properties of the product were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectroscope and vibrating sample magnetometer (VSM). It was found that the Co/ZnO core-shell structure nanocomposites exhibited both of favorable magnetism and photoluminescence properties. Results of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of cobalt/zinc oxide was better than that of pure cobalt nanoparticles.  相似文献   

17.
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy () and entropy () have been calculated. Finally, information related to variations of differential adsorption enthalpy () and entropy () with the surface coverage fraction (θ) was obtained by using the corresponding Clausius-Clapeyron equations.  相似文献   

18.
Using an impregnation pitch from bituminous coal tar (OP) supplied by Industrias Químicas del Nalon Company as raw material, two phases (isotropic and anisotropic) have been obtained. The latter was used as precursor for the preparation of activated carbons. First, a chemical activation process was carried out with ZnCl2 as activating agent. The process was conducted at different concentrations and temperatures and by means of impregnation with solid zinc chloride. Optimal values were obtained for samples prepared by using a ZnCl2:pitch ratio equal to 3:1 (sample AZn3). Next, this sample was thermally treated at two different temperatures, i.e., 700 and 800 °C. A lose of specific surface area, microporosity and mesoporosity was observed with respect to sample AZn3, such a lose being more remarkable as temperature increased. Moreover, impregnation of the anisotropic phase of the original pitch with an aqueous solution of ZnCl2 followed by thermal treatment resulted in a poorly developed surface area and porous texture, probably due to the presence of Zn complexes, which interfere with the activation process.  相似文献   

19.
TiO2-coated activated carbon (TiO2/AC) composites and pure TiO2 powders were prepared by a sol-gel method using tetrabutylorthotitanate as a precursor. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), X-ray photoelectron spectrum (XPS) and nitrogen absorption. The photoactivity of samples was evaluated by methylene blue (MB) degradation. The analysis results show that compared with pure TiO2 powders, the spherical-shaped TiO2 particles are well-dispersed in the AC matrix and the size of the resulting TiO2 crystallites decreases to below 40 nm with increasing phase transformation temperature. The AC matrix creates anti-calcination effects and shows interfacial energy effects that control the growth of the TiO2 particles, baffle the anatase to rutile phase transition, and cumber the TiO2 particles to agglomerate. Compared with the surface areas of TiO2 powders, the combination of TiO2 and AC forms composites with high surface areas which are slightly affected by calcination temperature. By AC support, the photoactivity of TiO2 is increased in MB photocatalytic course, possible because active carbon increases photocatalytic activity of TiO2 particles by producing high concentration of organic compound near TiO2, and small-size TiO2 particles are well-dispersed on the surface of AC.  相似文献   

20.
Modification of bamboo-based activated carbon was carried out in a microwave oven under N2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N2 adsorption, acid-base titration, point of zero charge (pHpzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pHpzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号