首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We consider the problem of laminar mixed convection flow between parallel, vertical and uniformly heated plates where the governing dimensionless parameters are the Prandtl, Rayleigh and Reynolds numbers. Using the method based on the centre manifold theorem which was derived from the general theory of dynamical systems, we reduce a three-dimensional simplified model of ordinary differential amplitude equations emanating from the original Navier-Stokes system of the problem in the vicinity of a trivial stationary solution. We have found that when the forcing parameter, the Rayleigh number, increases beyond the critical value Ras, the stationary solution is a pitchfork bifurcation point of the system.  相似文献   

3.
A method for controlling non-linear dynamics and chaos is applied to the infinite dimensional dynamics of a buckled beam subjected to a generic space varying time-periodic transversal excitation. The homoclinic bifurcation of the hilltop saddle is identified as the undesired dynamical event, because it triggers, e.g., cross-well scattered (possibly chaotic) dynamics. Its elimination is then pursued by a control strategy which consists in choosing the best spatial and temporal shape of the excitation permitting the maximum shift of the homoclinic bifurcation threshold in the excitation amplitude-frequency parameters space.The homoclinic bifurcation is detected by the Holmes and Marsden's theorem [A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Arch. Ration. Mech. Anal. 76 (1981) 135-165] constituting a generalization of the classical Melnikov's theory. Two classes of boundary conditions (b.c.) are identified: for the first, the Melnikov function is exactly the same as obtained with the reduced order models, while for the second, which is more general, this is no longer true, and the non-linear normal modes theory is used. Based on this distinction, the control method is then separately applied to the two cases, and the optimal spatial and temporal shapes of the excitation are determined.A detailed comparison of the infinite vs finite dimensional models is performed with respect to the control features, and it is shown that, depending on the b.c., the control based on the reduced order model provides either exact or engineering acceptable results, although more systematic investigations are required to generalize the last conclusion.  相似文献   

4.
The dynamic pull-in instability of double clamped microscale beams actuated by a suddenly applied distributed electrostatic force and subjected to non-linear squeeze film damping is investigated. A reduced order model is built using the Galerkin decomposition with undamped linear modes as base functions and verified through comparison with numerical finite differences solution. The stability analysis of a beam actuated by one and two electrodes symmetrically located at two sides of the beam and operated by a step-input voltage is performed by evaluating the largest Lyapunov exponent, the sign of which defines the character of the response. It is shown that this approach provides an efficient quantitative criterion for the evaluation of dynamic pull-in instability, especially when combined with compact reduced order models. Based on the Lyapunov exponent criterion, the influence of various parameters on the beam dynamic stability is investigated.  相似文献   

5.
张伟  刘杰  韩旭  谭柱华 《爆炸与冲击》2013,33(3):231-037
提出了一种通过给定的土中爆炸成腔毁伤效应确定炸点状态的计算反求方法。该方法将确定炸点状态的反问题转化为求解爆炸毁伤效应的计算值与给定值误差函数最小的优化问题。在反求过程中,采用基于误差减小比率技术的多项式近似模型代替土中爆炸数值分析模型,以便提高反求效率。采用Tikhonov正则化方法克服反求过程中出现的病态问题。在此基础上,引入信赖域管理策略判断当前近似模型与实际模型的逼近程度,以确定最优的反求向量。炸点状态反求结果与实验结果的对比分析表明,该方法能够有效且稳定地通过给定的毁伤效应实现炸点状态的反求,这可为炸点状态的设计提供参考。  相似文献   

6.
This paper puts forth a dynamic framework for investigating the subgrid scale physics of decaying two-dimensional turbulence utilising a modular approach with eddy viscosities in various functional forms. The derivation of the low-pass spatially filtered implementation of the Navier–Stokes equations is given by using the vorticity-streamfunction formulation. Two different implementations of the viscosity kernels based on the representation of the eddy viscosity terms are proposed and tested by solving a canonical two-dimensional decaying turbulence problem. It is seen that the implementation of the eddy viscosity formulation plays a distinct role in the dissipative behaviour of the different viscosity kernels. Among eddy viscosity kernels tested, we found that the Leith eddy viscosity formulation yields superior results with higher correlation coefficients.  相似文献   

7.
The distribution of stress and strain fields in a micro-structural area of a particle reinforced composite is studied by a combination of experimental and numerical method (hybrid method). With the experimental values of displacements in a micro-region as the boundary loading condition, strain and stress fields inside the micro-region are calculated by the finite element method under two different kinds of modeling, namely, as plane stress and plane strain condition. The differences between the two kinds of modeling conditions as applied to micro-structural areas are discussed. Project Supported by the National Natural Science Foundation of China (19972046) and National Overseas Study Foundation.  相似文献   

8.
本文提出了用于岩土弹塑性有限元分析的隐式积分弹性刚度算法。该算法既具有隐式积分法精度好、效率高、无条件稳定等优点,也具有弹性刚度法中刚度矩阵正定、对称的特点,更重要的是它避免了传统切线刚度法在处理岩土非相关联塑性流动和屈服面“角点”所遇到的非对称性和奇异性计算问题。通过算例分析了该算法的精度、效率  相似文献   

9.
将径向点插值方法应用在结构波动特性的快速分析中.在波数与方位角构成的二维参数空间中,通过初始规则节点布点和梯度自适应过程,对表征结构波动特性之一的群速度进行了插值计算,并把插值计算的结果与直接计算的结果进行比较,通过误差分析验证了径向插值方法在结构波动特性的快速计算中的有效性.  相似文献   

10.
This contribution is concerned with the numerical modeling of an isolated red blood cell (RBC), and more generally of phospholipid membranes. We propose an adaptive Eulerian finite element approximation, based on the level set method, of a shape optimization problem arising in the study of RBCs. We simulate the equilibrium shapes that minimize the elastic bending energy under prescribed constraints of fixed volume and surface area. An anisotropic mesh adaptation technique is used in the vicinity of the cell membrane to enhance the robustness of the method. Efficient time and spatial discretizations are considered and implemented. We address in detail the main features of the proposed method, and finally we report several numerical experiments in the two‐dimensional and the three‐dimensional axisymmetric cases. The effectiveness of the numerical method is further demonstrated through numerical comparisons with semi‐analytical solutions provided by a reduced order model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
An inter-diffusion interface model (IDIM) is put forward for a bonded structure. Laplace and Fourier integral transforms are applied to reduce the transient anti-plane fracture problem of the structure as a Cauchy singular integral equation. Lobatto-Chebyshev collocation method and Laplace numerical inversion transform are employed to evaluate transient stress intensity factors (TSIFs). The effects of geometrical and physical parameters on TSIFs are studied. Specially discussed are the influences of the weak/micro-discontinuity of the interfaces. Comparison between IDIM and the graded interlayer model indicates that if the inter-diffusion between the two original materials is prominent, the former should be applied instead of the latter in fracture analyses of bonded structures.  相似文献   

12.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

13.
In this paper the use of the mixed finite element method for stress analysis of reinforced conical branch pipe junctions subjected to internal water pressure is presented, branch pipe junction being considered as an intersection body of two thin conical shells. For the purpose of computing a large number of branch pipe junctions with different geometrical varieties, an automatical meshing routine has been up in the mixed FEM program with 3 geometrical parameters of the junctions to be varied, i.e., the angle included between axes of the main pipe and the branch pipe, the thickness of the wall of the shell and that of the reinforcing pad and the ratio of diameters of the branch pipe to that of the main pipe. The computer program has been provided functions to distinguish 8 kinds of different meshes and 12 sorts of elements, and to lay automatically coordinates of nodes as well as different boundary conditions of element. In this way, stress analyses of 101 junctions have been carried out and results of computations are excellent.  相似文献   

14.
千米级斜拉桥施工过程中主梁的预转折角研究   总被引:3,自引:0,他引:3  
斜拉桥安装、张拉、起拱等系统的施工金过程分析和控制技术是一项涉及斜拉桥质量和安全的关键技术问题。本文以某千米级斜拉桥为例,采用一阶最优化计算方法来确定斜拉桥的合理施工状态。以成桥后主梁的线形为目标函数,施工中主梁节段的预转折角为设计变量,建立了斜拉桥施工控制的空间非线性有限元分析模型,模拟了钢箱主梁的悬臂拼装过程,求出各施工阶段节段的预转折角。  相似文献   

15.
薄壁管材在连续矫直过程中,各矫直辊组的压弯量作为核心工艺参数直接决定了薄壁管材的矫直精度。而目前现场仍沿用经验图表结合人工经验和反复试矫对其进行估定,亟待建立针对性的压弯量数学模型以指导生产。为此从薄壁管材的结构特点和矫直辊系组成出发,构建了针对压弯量计算的简化悬臂结构模型,基于相关假设和弹塑性相关理论,分别确定了平面应力状态下弹性区和弹塑性区管材横截面的弯矩模型,运用虚功原理建立了矫直辊压弯量力学模型,并给出了数值计算方法,完成了程序开发。经有限元动态仿真试验证明了模型的正确性和适用性,通过对典型管材数据的计算绘制了一系列工艺参数曲线,得到管材轴线弯曲半径和压弯量随管材直径、壁厚和屈服极限的变化关系,为现场压弯量的调整提供理论依据。  相似文献   

16.
This work focuses upon the development of a wavelet-based variant of the variational multiscale method (VMS) for accurate and efficient large eddy simulation (LES) called wavelet-based VMS-LES (WMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon the pressure-stabilized discontinuous Galerkin finite element method (DG-FEM). The VMS approach is designed to produce an a priori scale separation of the governing equations, in a manner which makes no assumptions on either the boundary conditions or the mesh uniformity. Using second-generation wavelets (SGWs) elementwise for scale separation ensures, on one hand, the preservation of the computational compactness of the DG-FEM scheme and, on the other hand, the ability to achieve scale separation in wavenumber space. The optimal space-frequency localization property of the SGW provides an improvement over the commonly used Legendre polynomials. The suitability of the elementwise SGW scale-separation operation as a tool for error indication has been demonstrated in an h-adaptive computation of the reentrant corner test case. Finally, the DG-FEM solver and the WMS-LES method have been assessed through simulations upon the three-dimensional Taylor-Green vortex test case. Our results indicate that the WMS-LES approach exhibits a distinct improvement over the monolevel LES approach. This effect is not produced by a change in the magnitude of the subgrid dissipation but rather by the redistribution of the subgrid dissipation in wavenumber space.  相似文献   

17.
Cracks and other forms of concentrated damage can significantly affect the performance of slender beams under static and dynamic loads. The computational model for such defects often consists of a localised reduction in the flexural stiffness, which is macroscopically equivalent to a beam where the undamaged parts are hinged at the position of the crack, with a rotational spring taking into account the residual stiffness (“discrete spring” model). It has been recently demonstrated that this model is equivalent to an inhomogeneous Euler–Bernoulli beam in which a Dirac’s delta is added to the bending flexibility at the position of each damage (“flexibility crack” model). Since these models concentrate the increased curvature at a single abscissa, a jump discontinuity appears in the field of rotations. This study presents an improved representation of cracked slender beams, based on a general class of gradient elasticity with both stress and strain gradient, which allows smoothing the singularities in the flexibility crack model. Exact closed-form solutions are derived for the static response of slender gradient-elastic beams in flexure with multiple cracks, and the numerical examples demonstrate the effects of the nonlocal mechanical parameters (i.e. length scales of the gradient elasticity) in this context.  相似文献   

18.
An interface crack with an artificial contact zone at the right-hand side crack tip between two dissimilar finite-sized piezoelectric materials is considered under remote mixed-mode loading. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical loads, the stress intensity factors at the singular points are obtained. As a particular case of this solution, the contact zone model (in Comninou’s sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are derived. The dependencies of the contact zone lengths on external load coefficients are illustrated in graphical form. For a particular case of a short crack with respect to the dimensions of the bimaterial compound, the numerical results are compared to the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.  相似文献   

19.
Two‐dimensional flows past a stationary circular cylinder near a plane boundary are numerically simulated using an immersed interface method with second‐order accuracy. Instead of a fixed wall, a moving wall with no‐slip boundary is considered to avoid the complex involvement of the boundary layer and to focus only on the shear‐free wall proximity effects for investigating the force dynamics and flow fields. To analyze the convergence and accuracy of our implementation, numerical studies have been first performed on a simple test problem of rotational flow, where the second order of convergence is confirmed through numerical experiments and an optimal range of relative grid‐match ratio of Lagrangian to Eulerian grid sizes has been recommended. By comparing the force quantities and the Strouhal number, the accuracy of this method has been demonstrated on the flow past a stationary isolated cylinder. The cylinder is then put in proximity to the wall to investigate the shear‐free wall proximity effects in the low Reynolds number regime (20≤Re≤200). The gap ratio, e/D, where e denotes the gap between the cylinder and the moving wall and D denotes the diameter of the cylinder, is taken from 0.10 to 2.00 to determine the critical gap ratio, (e/D)critical, for the alternate vortex shedding, where the fluid forces, flow fields and the streamwise velocity profiles are studied. One of the key findings is that the (e/D)critical for the alternate vortex shedding decreases as the Reynolds number increases. We also find that, in this low Reynolds number regime, the mean drag coefficient increases and peaks at e/D = 0.5 with the increase of e/D and keeps decreasing gently from e/D = 0.5 to e/D = 2.0, while the mean lift coefficient decreases monotonically with the increase of e/D. New correlations are then proposed for computing force coefficients as a function of Re and e/D for a cylinder in the vicinity of a moving plane wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane has been developed. The dipole density distribution is represented with a weighted Jacobi polynomial expansion where the weight function captures the asymptotic behaviour at each end of the crack. To allow for opening and sliding at crack kinking and branching the dipole density representation contains conditional extra terms which fulfills the asymptotic behaviour at each endpoint. Several test cases involving straight, kinked and branched cracks have been analysed, and the results suggest that the accuracy of the method is within 1% provided that Jacobi polynomial expansions up to at least the sixth order are used. Adopting even higher order Jacobi polynomials yields improved accuracy. The method is compared to a simplified procedure suggested in the literature where stress singularities associated with corners at kinking or branching are neglected in the representation for the dipole density distribution. The comparison suggests that both procedures work, but that the current procedure is superior, in as much as the same accuracy is reached using substantially lower order polynomial expansions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号