首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IV characteristics of ZnO nanoribbons (NRs) have been investigated using density functional theory coupled to non-equilibrium Green’s Function. The current through the NRs drops with the increasing NR width, leveling off to 1.66 and 0.42 µA in zig-zag and arm-chair NRs respectively for widths ~20 Å at 3 V of electrical bias. The transconductance as well as the current flowing through the arm-chair NRs decays exponentially with NR width for both odd and even number of dimer lines traversed. The current through the zig-zag NRs falls off exponentially with NR width, being insensitive to the odd or even numbers of zig-zag lines appearing along the normal to the charge transport direction.  相似文献   

2.
First principles calculations play a significant role in developing and optimizing new energy storage and conversion materials especially at the nanoscale. In this work, the structural, energetics and, electronic properties of adsorbed Pt atom onto two-dimensional graphene, hexagonal BN (h-BN) and SiC (h-SiC) sheets have been investigated at DFT–B3LYP level of theory using coronene molecule as a suitable model. Spin-polarization and model size effects on the Pt adsorption properties have also been evaluated. Various positions for establishing Pt atom on the selected substrates have been considered and full structural optimization was carried out for all selected systems. The adsorption energies, electronic structures and charge population analysis indicated that in all the studied structures there were strong interaction between two interacting entities. It was also found that the adsorption ability of h-SiC is much stronger than the other counterparts with adsorption energy of 3.828 eV.We have also examined the O2 adsorption properties of Pt-decorated graphene, h-BN and h-SiC sheets for possible tunability of O2 adsorption strength of systems under study. We found that h-SiC sheet possess a weakened O2 adsorption energy among the selected substrates. In view of the strong stability of adsorbed Pt atom on h-SiC sheet and relatively weaker O2 adsorption energy, one can expect that h-SiC might be a promising material for support assistant as well as increasing the catalytic activity of Pt atoms compared to graphene and h-BN substrates. This may attribute to preventing aggregating of Pt atoms due to the strong fastening nature of the h-SiC sheet and also by affording a balance in the O2 adsorption strength that lead to enhanced catalyst turnover. Therefore, our first principles findings offer a unique opportunity for design and applications of SiC-based nanoscale supports in fuel cell technology.  相似文献   

3.
Metal doped ZnO nanostructures have attracted extensive attention as chemical sensors for toxic gases. An experimental study has previously shown that Ga-doped ZnO nanostructures significantly show a higher electronic response than the undoped sample toward CO gas. Here, the electronic sensitivity of pristine and Ga-doped ZnO nanoclusters to CO gas is explored using density functional theory computations (at B3LYP, PBE, M06-2X, and ωB97XD levels). Our results reproduce and clarify the electrical behavior which has been observed experimentally from the ZnO nanoparticles after the exposure to CO gas. We showed that the calculated change of HOMO-LUMO gap may be a proper index for the change of electrical conductance which is measurable experimentally. It was found that, in contrast to the pristine ZnO nanocluster, the electronic properties of Ga-doped cluster are sharply sensitive to the presence of CO gas which is in good accordance with the results of the experimental study.  相似文献   

4.
The geometries, electronic, and magnetic properties of the 3d atom doped icosahedron (ICO) Ti12M (M=Sc to Zn), where a dopant atom replaces either the centra l(Ti12Mc) or surface (Ti12Ms) Ti atom in ICO Ti13 cluster, have been systematically investigated by using the density functional theory. The structures of all the optimized Ti12Mc and Ti12Ms clusters are distorted ICO. Sc, Ni, Cu, and Zn atoms prefer to displace surface Ti atom, V, Cr, Mn, and Fe atoms prefer to displace central Ti atom. The position of impurity atom depends on the strength of the interaction between the central atom and the surface atoms. As compared to the pure Ti13 cluster, Ti12Mc and Ti12Ms (M=V, Fe, Co, and Ni) clusters are more stable, Ti12Mc and Ti12Ms (M=Sc, Cr, Mn, Cu, and Zn) are less stable. Both Ti12Nis and Ti12Nic are magic clusters, which originate from their electronic as well as geometric closed shells. Because the exchange interaction prevails over the crystal field in Ti12M clusters, the valence electrons fill molecular orbitals in terms of Hund’s rule of maximum spin.  相似文献   

5.
6.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

7.
The effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon with zigzag edge (ZBNNR) and armchair edge (ABNNR) have been studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Though ZBNNR or ABNNR with H atom terminated at both edges is nonmagnetic semiconductor, the dangling bond induces magnetism for the ZBNNR with bare N edge, bare B edge, bare N and B edges, the ABNNR with bare N edge and bare B edge. However, the ABNNR with bare N and B edges is still nonmagnetic semiconductor due to the strong coupling of the dangling bonds of dimeric N and B atoms at the same edge. The magnetic moment of ZBNNR with bare N(B) edge is nearly half the magnetic moment of ABNNR with bare N(B) edge. Such a half relationship is also existed in the number of the dangling bond states appeared around the Fermi level in the band structures. Furthermore, the dangling bond states also cause both ZBNNR and ABNNR with bare N edge a transition from semiconducting to half-metallic and thus a completely (100%) spin-polarization, while cause both ZBNNR and ABNNR with bare B edge as well as ABNNR with bare N and B edges only a decrease in their band gap.  相似文献   

8.
Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A “double junction” is proposed, involving a Schottky junction and p–n junction (denoted as “Ag-p–n junction”) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm−1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.  相似文献   

9.
The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.  相似文献   

10.
《Physics letters. A》2020,384(6):126127
Using density functional theory (DFT) and the nonequilibrium Green's function method, we explored the electronic structures and transport properties of zigzag phosphorene nanoribbons (ZPNRs) with ordered doping of Si atoms. Our results show that both pristine and Si-doped ZPNRs exhibit metallic properties and the conductance of the doped ZPNRs nanoribbons can be modulated effectively by changing doping positions and concentrations. As different doping positions, different transmission currents can be obtained even with the same doping concentration. Moreover, current amplification factors vary with the doping concentrations. In addition, compared with the pristine system, negative differential resistance effect can also be observed in doped system (Si3), which occurs in lower bias range.  相似文献   

11.
We report a detailed ab initio study of the structural, electronic, and volume dependent elastic and lattice dynamical properties of Sr(Ni0.5Si0.5)2. The calculations have been carried out within the local density functional approximation using norm-conserving pseudopotentials and a plane-wave basis. The phonon dispersion curves along the high-symmetry directions and phonon frequencies with their Grüneisen parameters at the Brillouin zone center are computed by using density functional perturbation theory while the elastic constants are calculated in metric-tensor formulation. The band structure, and partial densities of states and Fermi surface topology are also discussed.  相似文献   

12.
Density functional theory (DFT)/time dependent density functional theory (TDDFT) based calculations were performed for basis sets 6-31G for DFT and 6-31G (d), 6-31G (d,p) and 6-31+G (d,p) for TDDFT calculations on pure boron nitride nanoribbon (BNNR) B15N15H14 and metal decorated B15N14H14-X BNNRs, where X = Ni+, Fe+, Co, Cr+, Cu and Al. The metal doping ratio = 3.45% and the doping site (nitrogen atom), were fixed for all the BNNRs. Electronic properties dipole moment, binding energy and bandgap were determined. Absorption properties in the wavelength range (100–600 nm) were studied, and optical gaps, absorption wavelengths, oscillator strengths and dominant transitions were calculated. The effect of metal doping on the electronic and optical properties was investigated. Single metal doping shifts the electronic gap of pure BNNR from insulating to semiconducting nature. Red shift in the absorption wavelengths from ultraviolet to visible in all the BNNRs was noticed.  相似文献   

13.
A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn2S4 and CdIn2S4 at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn2S4 and CdIn2S4 compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn2S4 and CdIn2S4 aggregates are computed in the framework of the Voigt–Reuss–Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

14.
Using the ab initio methods for solving the Bethe–Salpeter equation on the basis of the FPLAPW method, optical properties of crystalline phenanthrene were calculated, in a comparison to its isomer, anthracene. It was found that despite the similarity of the structural, electronic, and the overall optical properties in a 40 eV energy range, phenanthrene and anthracene show significant differences in their optical spectra in the energy range below band gaps. Phenanthrene has two spin singlet excitonic features whereas anthracene shows one. The singlet and the lowest triplet binding energies of phenanthrene were found to be larger than anthracene. In this study, in addition, a comparison has been made between the optical spectra in RPA and the existing experimental data.  相似文献   

15.
Electronic structure and optical properties of BiSI crystal were investigated by the full potential linearized augmented plane wave (FL-LAPW) method with density functional theory (DFT). The complex dielectric function and optical constants, such as optical absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, were calculated. The optical properties of BiSI crystal were studied experimentally by spectroscopic ellipsometry. The experimental results were compared with the theoretical spectra of complex dielectric functions and with the spectra of a pseudo-dielectric function (PDF). This method shows that experimental spectra consist of four Laurence lines sum.  相似文献   

16.
We report a first principles calculation to investigate the electron transport properties of defected armchair graphene nanoribbon (AGNR) influenced by Stone-Wales (SW) defect. The SW defect is found to be able to effectively influence the electronic structure of the defected AGNRs, and their electron transport behaviors can exhibit prominent differences depending on the symmetry of the nanostructured morphology. Moreover, our simulations have revealed that the introducing of the SW defect could be favorable for the electron transport of the defective AGNR. Our investigation has confirmed the possibility of tuning the electron transport of graphene nanoribbon by introducing a topological defect, which could be helpful to extending the field of applications for graphene nanoribbon-based nanodevices.  相似文献   

17.
Effects of the doping atom (O, Al, and (Al, O)) on structural and electronic properties of the monolayer WS2 have been studied by using first-principles calculations. Results show that the covalent character of W–S bonding has been enhanced after doping. Meanwhile, W–O, Al–S and W–S bonds of (Al, O) co-doped WS2 monolayer have higher covalent character compared with O-doped and Al-doped WS2 monolayer of this work. After doping with Al (or Al, O) atoms, Fermi level moves close to the valence band and the dopant atoms produce the defect energy levels, indicating that Al doped and (Al, O) co-doped WS2 monolayer both have p-type conductivity. O-doped and (Al, O) co-doped WS2 ultrathin films was prepared on Si substrates. Results of Raman spectra show the formation of the O-doped and (Al, O) co-doped WS2 films. Moreover, compared with the pure WS2, the approximate reduction of 0.43 eV and 0.46 eV for W 4f and S 2p in binding energy after (Al, O) co-doped shows that p-type doping of (Al, O) co-doped WS2 has been verified.  相似文献   

18.
Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater–Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.  相似文献   

19.
A survey of the literature data on the adsorption of benzene on graphene or carbon nanotubes indicates that the distance between the graphene sheet and benzene molecule is determined from weak van der Waals forces (∼3.40 Å). In our theoretical study, it was found that the benzene/graphene structure (in a specific configuration with carbon atoms located at the atop positions, stacked directly on the top of each other) forms strong covalent bonds, if the distance between the graphene and benzene is about 1.60 Å. Such a short distance corresponds to about a half of the usual separation between the graphite layers. It was also shown that at such a short distance the carbon atoms of the benzene molecule move towards the graphene sheet, whereas the hydrogen atoms move in a different direction, thus breaking the benzene planar structure.  相似文献   

20.
Equilibrium geometries, relative stabilities, and magnetic properties of small AunMn (n=1-8) clusters have been investigated using density functional theory at the PW91P86 level. It is found that Mn atoms in the ground state AunMn isomers tend to occupy the most highly coordinated position and the lowest energy structure of AunMn clusters with even n is similar to that of pure Aun+1 clusters, except for n=2. The substitution of Au atom in Aun+1 cluster by a Mn atom improves the stability of the host clusters. Maximum peaks are observed for AunMn clusters at n=2, 4 on the size dependence of second-order energy differences and fragmentation energies, implying that the two clusters possess relatively higher stability. The HOMO-LUMO energy gaps of the ground state AunMn clusters show a pronounced odd-even oscillation with the number of Au atoms, and the energy gap of Au2Mn cluster is the biggest among all the clusters. The magnetism calculations indicate that the total magnetic moment of AunMn cluster, which has a very large magnetic moment in comparison to the pure Aun+1 cluster, is mainly localized on Mn atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号