首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic layer chemical vapor deposition (ALCVD) deposited Al2O3 and ZrO2 films were investigated by ex situ X-ray photoelectron spectroscopy. The thickness dependence of band gap and valence band alignment was determined for these two dielectric layers. For layers thicker than 0.9 nm (Al2O3) or 0.6 nm (ZrO2), the band gaps of the Al2O3 and ZrO2 films deposited by ALCVD are 6.7±0.2 and 5.6±0.2 eV, respectively. The valence band offsets at the Al2O3/Si and ZrO2/Si interface are determined to be 2.9±0.2 and 2.5±0.2 eV, respectively. Finally, the escape depths of Al 2p in Al2O3 and Zr 3p3 in ZrO2 are 2.7 and 2.0 nm, respectively.  相似文献   

2.
Internal photoemission of electrons was used to determine the band alignment in metal (Mg, Al, Ni, Cu, Au)-oxide-silicon structures with Al2O3- and ZrO2-based insulators. For Al2O3- and ZrO2 layers grown on Si by atomic layer deposition the barrier height between the Si valence band and the oxide conduction band was found to be 3.25 and 3.1 eV, respectively. Thermal oxidation of the Si/oxide stacks results in a barrier height increase to ≈4 eV for both cases due to formation of a silicate interlayer. However, there is a significant sub-threshold electron emission both from silicon and metals, indicating a high density of states in the band gap of the insulators. These states largely determine the electron transport across metal oxides and may also account for a significant dipole component of the potential barrier at the metal/ZrO2 and metal/Al2O3 interfaces.  相似文献   

3.
The luminescence of GeO2 rutile-like crystals was studied. Crystals were grown from a melt of germanium dioxide and sodium bicarbonate mixture. Luminescence of the crystal was compared with that of sodium germanate glasses produced in reduced and oxidized conditions. A luminescence band at 2.3 eV was observed under N2 laser (337 nm). At higher excitation photon energies and X-ray excitation an additional band at 3 eV appears in luminescence. The band at 2.3 eV possesses intra-center decay time constant about 100 μs at 290 K and about 200 μs at low temperature. Analogous luminescence was obtained in reduced sodium germanate glasses. No luminescence was observed in oxidized glasses under nitrogen laser, therefore the luminescence of rutile-like crystal and reduced sodium germanate glass was ascribed to oxygen-deficient luminescence center modified by sodium. The band at 2.3 eV could be ascribed to triplet-singlet transition of this center, whereas the band at 3 eV, possessing decay about 0.2 μs, could be ascribed to singlet-singlet transitions. Both bands could be excited in recombination process with decay kinetics determined by traps, when excitation realized by ArF laser or ionizing irradiation with X-ray or electron beam. Another luminescence band at 3.9 eV in GeO2 rutile-like crystal was obtained under ArF laser in the range 100-15 K. Damaging e-beam irradiation of GeO2 crystal with α-quartz structure induces similar luminescence band.  相似文献   

4.
SiO2-BaO-ZnO-xB2O3-(10−x) Y2O3, (0 ≤ x ≤ 10) glasses are synthesized. The effect of Y2O3 on the structural and optical properties of glasses has been investigated using different characterization techniques. The results are discussed in light of non-bridging oxygens (NBO), optical basicity and heat-treatment of glasses. The band gap has been calculated for as cast and heat-treated glasses. The band gap energy is found to decrease with the increasing content of Y2O3 in the glasses and heat-treatment. The presence of the crystalline phase in the glass matrix showed remarkable effect on band gap which decreases to semiconducting range.  相似文献   

5.
Chalcohalide glasses from the GeSe2-Sb2Se3-AgI system were synthesized by taking preliminary prepared GeSe2, Sb2Se3 and AgI in their molecular percentages and melting them in an evacuated quartz ampoule. Thin films from the above system were deposited using vacuum thermal evaporation at different conditions on optical glass substrates BK-7. Using X-ray microanalysis it was found that the film composition differs in a certain degree from the bulk composition. Optical transmission and reflection measurements were carried out in the spectral range 400-2500 nm. The optical constants of films thicker than 400 nm (refractive index, n, and absorption coefficient, k) and the film thickness (d) were calculated using a method developed by Konstantinov. The values of n change from 2.38 for thin GeSe2 films up to 3.48 for thin Sb2Se3 films while the optical band gap decreased from 1.92 eV to 1.29 eV, respectively. After exposure to light the photo-induced changes in the optical parameters were negligible for GeSe2 and Sb2Se3 films and increase for some of the ternary samples. Using IR spectroscopy some conclusions about changes in the film structure were drawn.  相似文献   

6.
J. Ozdanova  L. Tichy 《Journal of Non》2007,353(29):2799-2802
Four ZnO-Bi2O3-TeO2 glasses were prepared from high purity (4N5) oxides. From measurements of the optical transmission on very thin bulk samples the optical gap was determined at around 3.55 eV for the glasses studied. The temperature dependence of the optical gap was also determined from the room temperature close up to 500 K. Preliminary Raman scattering measurements indicate that with a decrease in TeO2 content, TeO4 trigonal bipyramid transformation proceeds into TeO3 trigonal pyramids.  相似文献   

7.
Boron monosphide (BP) with (100) orientation can be epitaxially grown on Si substrates with (100) orientation by thermal decomposition of B2H6 and PH3 in hydrogen. In a horizontal CVD system, the growth rate was studied as a function of gas phase composition and temperature. The growth rate is independent of the PH3 partial pressure in the region where the PH3 is in excess. For low values of the B2H6 partial pressure the growth rate is proportional to the B2H6 partial pressure (a linear region) with an activation energy of 1.8 eV, and for high values of the B2H6 partial pressure the growth rate becomes constant (a saturation region) with an acivation energy of 3.0 eV. A simple adsorption-reaction model can be proposed to explain the experimental growth kinetics. The conductivity of the as-grown layer is determined by the PH3 partial pressure. n-type BP can be obtained for high values of the PH3 partial pressure and p-type BP for low values. Si doping during the growth and phosphorus anti-site donors are two possibilities to explain the results.  相似文献   

8.
Powders of ilmenite structure NiTiO3 and CoTiO3 were prepared by a simple method based on the modified Pechini process. The raw compounds and citric acid (CA) were mixed in ethanol (EA) with the molar ratio Ni(Co)/Ti/CA/EA = 1/1/1/7.5. The DTA curve shows exothermic peaks only around 300-350 °C and 600 °C, which correspond to the decomposition of the organic compound and direct crystallization of the ilmenite phase. X-ray diffraction patterns indicated that the ilmenite phase was successfully synthesized as the Ni(Co)-Ti precursor calcined above 600-900 °C for 3 h, and the activation energies of NiTiO3 and CoTiO3 were calculated to be about 8.84 and 13.23 kJ/mol. TEM bright field images showed that the grain sizes of powders of NiTiO3 and CoTiO3 at 600-900 °C were estimated to be about 10-250 and 20-200 nm depending on the nature of the aggregate. The samples of NiTiO3 calcined at 600-800 °C have the larger specific surface area of 31.51, 18.78, and 6.01 m2/g, respectively. The UV-Vis diffuse reflectance spectra show the optical band gaps of NiTiO3 and CoTiO3 as 3.02 and 2.43 eV.  相似文献   

9.
A series of bismuth tungsten tellurite glasses were prepared and their densities, linear refractive indices and transmission spectra were measured. The optical bandgaps Eopt and Urbach energies Ee of glasses were obtained from ultraviolet absorption edges. Both the optical gap (Eopt) and the band tail (Ee) are behaving oppositely. As the value of Eopt decreases with increasing WO3 content, the degree of disorder increases which causes more defects or localized states resulting in deep localized in the bandgap with the tailing increased. Z-scan technique was carried out to investigate the third-order nonlinear optical properties of Bi2O3-WO3-TeO2 glasses. The third-order optical nonlinearity increases with decreasing the optical bandgap Eopt, since a increase of WO3 content can provide the non-bridging oxygen ion content.  相似文献   

10.
The refractive index, optical absorption coefficient α and the thermomodulated absorption dα/dT have been measured on 70% TiO2?30% SiO2 glasses with up to 8% Ti3+. The direct absorption data show intense ligand field absorption at photon energies = 1.9 and 3.0 eV, arising from Ti3+ in a distorted octahedral environment. In the bandgap region at 3.5 eV α obey αhν ~ ( ? Eg)2; it is qualitatively different from the bandgap absorption in crystalline TiO2. The da/dT spectra show peaks in the bandgap region and at 1.1 eV in the near IR. This last peak is attributed to absorption by small polarons, and its line shape is compared with theoretical predictions.  相似文献   

11.
The elctrical conductivity of amorphous chalcogenide (As2Te3)95Ge5 is investigated at variable frequency, from 1 kHz up to 35 GHz, and a variable temperature, from 77 to 300 K. The low-temperature conductivity is constant with temperature at a fixed frequency. At a fixed temperature, it obeys a ω0.8 law only at low frequencies. The results are analysed with respect to the polaron problem, but also with a simple model of several dilute localized levels having a wide energy distribution in the forbidden band.  相似文献   

12.
Single-crystalline antimony trisulfide (Sb2S3) nanomaterials with flower-like and rod-like morphologies were successfully synthesized under refluxing conditions by the reaction of antimony trichloride (SbCl3) and thiourea with PEG400 and OP-10 as the surfactants. X-ray diffraction (XRD) indicates that the obtained sample is orthorhombic-phase Sb2S3 with calculated lattice parameters a=1.124 nm, b=1.134 nm and c=0.382 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the flower-like Sb2S3 is 9–10 μm in size, which is composed of thin leaves with thickness of 0.05–0.2 μm, width of 0.8–2.2 μm and length of 2.5–3 μm, and the rod-like Sb2S3 is 45–360 nm in diameter and 0.7–4 μm in length, respectively. UV–Vis analysis indicates that the band gap of Sb2S3 nanorods is 1.52 eV, suitable for photovoltaic conversion. A possible mechanism of formation was proposed. The effects of reaction time and surfactants on the growth of nanomaterials with different morphologies were also investigated.  相似文献   

13.
The mixed alkali glass system Na2OK2OAl2O3SiO2 was investigated. Density, transformation temperature, refractive index, and chemical durability were studied. Optical absorption and ESR spectra of the CuO-doped glasses were determined.Calculations of the polarizability of O2?, bonding parameters of the Cu2+ complex, and the packing density are presented. It was found that for the mixed alkali glasses, the oxygen- alkali bond has a more ionic character than expected from additivity. This fact enables the non-linear changes of the refractive index, of the shift of the Cu2+ absorption band, and of the covalency to be interpreted as the Na mole fraction is varied. It is also possible to explain qualitatively the density, Tg and chemical durability non-linear variations with change of the Na content by the ionicity deviations of the bond character and the postulated pairs of Na+ and K+ ions in the mixed alkali glasses.  相似文献   

14.
Absorption edge, index of refraction and reflectivity were measured on a-TIS2, which is liquid at room temperature. Optical constants ?1 and ?1 in the 0.05–5 eV region were derived using the Kramers-Kronig analysis.  相似文献   

15.
Cs[VO2(NO3)2] (I), MoO2(NO3)2 (II), and Cs[MoO2(NO3)3] (III) complexes have been obtained by crystallization from nitric solutions and studied by single-crystal X-ray diffraction. Complexes I and II contain infinite zigzag chains of similar compositions, [VO2(NO3)2] and [MoO2(NO3)2], in which V and Mo atoms form, respectively, trigonal- and pentagonal-bipyramidal polyhedra. Each of these polyhedrons also contains one terminal and two bridge O atoms and two terminal NO3 groups which are monodentate and bidentate in complexes I and II, respectively. Complex III has an island structure and consists of Cs+ cations and [MoO2(NO3)3] anions, in which the Mo atom is surrounded by one bidentate NO3 group and two monodentate NO3 groups and two terminal O atoms in the cis-positions; oxygen atoms form a polyhedron in the form of distorted octahedron. According to the ab initio calculation of isolated MoO2(NO3)2 molecules in the gas phase and solution, the coordination environment of the Mo atom, similarly to the Cr(VI) atom in CrO2(NO3)2, is formed by two bidentate nitrate groups and two terminal O atoms (polyhedron- twisted trigonal prism).  相似文献   

16.
Nobuaki Terakado 《Journal of Non》2008,354(18):1992-1999
Oxy-chalcogenide glasses with compositions of xGeO2-(100 − x)GeS2, where 0 ? x ? 100 mol%, have been prepared and studied in terms of their structures and optical properties. X-ray fluorescence spectroscopy shows that Ge:S ratio can deviate from GeS2 by ∼10 at.%, depending critically upon the preparation conditions. Raman scattering spectroscopy suggests that stoichiometric GeO2-GeS2 glasses have a heterogeneous structure in the scale of 1-100 nm. The optical gaps are nearly constant at 3.0-3.5 eV for glasses with 0 ? x ? 80 mol% and abruptly increase to ∼6 eV in GeO2. This dependence suggests that the optical gap is governed by GeS2 clusters, which are isolated and/or percolated. Composition-deviated glasses appear as orange and brown, and these glasses seem to have more inhomogeneous structures.  相似文献   

17.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

18.
By rapid quenching in a twin roller apparatus, glass was found to occur widely in the systems of Li2O with Al2O3, Ga2O3, Bi2O3 and in mixed systems. Examination of the resulting flakes by X-ray powder diffraction, differential thermal analysis, and capacitance data revealed the occurrence of glass, glass transitions, crystallization exotherms and the nature of some of the crystallization paths.The log ionic conductivity of the glasses was found to follow a linear relationship with the Li concentration. Evidence was observed for three new metastable crystalline phases, one in the Li2OAl2O3 system and two in the Li2OBi2O3 system. The latter system also showed evidence for the occurrence of two glasses at almost all compositions.  相似文献   

19.
WS2 thin films have been deposited by chemical deposition technique using citric acid as a complexing agent at 343 K. X-ray pattern shows that crystalline nature with hexagonal- and orthorhombic-mixed phase. The films show that good optical properties high absorption and band gap value was found to be 1.31 eV. The specific conductivity of the film was found to be in order of 10−3 (Ω cm)−1.  相似文献   

20.
A study of infrared absorption in the 250–4000 cm?1 region has been carried out for 0.5 As2Se30.5 GeSe2 glasses quantitatively doped with oxide impurity. The frequencies of the intrinsic 2- and 3-phonon absorption bands at 490 and 690 cm?1 correspond well to those predicted from combinations of the high frequency bands in the first order IR and Raman spectra of As2Se3 and GeSe2 glasses.Glasses doped with As2O3 exhibit the same oxide impurity absorptionbands as those doped with GeO2. Unlike As2Se3 glass, at impurity concentrations up to 1000 ppm As2O3, 0.5 As2Se30.5 GeSe2 glass exhibits only one major oxide impurity species, characterized by absorption bands at 780 and 1260 cm?1 and due to oxygen bonded to network Ge. The observation of a much weaker network AsO vibration band at 670 cm?1 confirms that oxygen bonds preferentially to Ge in this glass. The same minor oxide species appears to determine excess IR absorption at the CO2 laser wavelength of 10.6 μm in both As2Se3 and 0.5 As2Se3 0.5 GeSe2 glasses. The frequencies and intensities of absorption bands due to hydrogen impurities are also quite comparable for these two materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号