首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The influence of various technological parameters of crystallization (acidity of growth solutions, crystallization temperature, growth rate, degree of solution purification) on the optical absorption of large KDP single crystals has been studied in the UV range of the spectrum. It is shown that the method of solvent recirculation with the use of the starting material with the microimpurity content not exceeding 5 × 10?5 wt % and solution ultrafiltration under the optimum crystallization conditions (tcr = 80°C, Vcr ~ (0.8–1.6) × 10?6 cm/s, pH 4) enables one to grow KDP single crystals with cross sections up to 300 × 300 mm2 and the transmission in the vicinity of the fundamental absorption edge λ = 200 nm) equal to 86%.  相似文献   

2.
We have studied the in-situ boron doping of high Ge content Si1?xGex layers (x=0.3, 0.4 and 0.5). These layers have been grown at low pressure (20 Torr) and low temperature (600–650 °C) with a heavily chlorinated chemistry on blanket Si(0 0 1) substrates. Such a chemistry yields a full selectivity versus SiO2 (isolation) and Si3N4 (sidewall spacers) on patterned wafers with gate stacks. We have quantified the impact of the diborane flow on the SiGe layer crystalline quality, its resistivity, the SiGe:B growth rate and the apparent Ge concentration. Resistivity values lower than 1  cm are easily achieved, all the more so for high Ge content layers. The SiGe growth rate increases and the apparent Ge concentration (from X-ray diffraction) decreases as the diborane flow increases. B atoms (much smaller than Si or Ge) indeed partially compensate the compressive strain in the SiGe:B layers. We have also probed the in-situ boron and phosphorus doping of Si at 750 °C, 20 Torr with a heavily chlorinated chemistry. The B ions concentration increases linearly with the diborane flow, then saturates at a value close to 4×1019 cm?3. By contrast, the P ions concentration increases sub-linearly with the phosphine flow, with a maximum value close to 9×1018 cm?3. Adding diborane (phosphine) to the gaseous mixture leads to a sharp increase (decrease) of the Si:B (the Si:P) growth rates, which has to be taken into account in device layers. All the know-how acquired will be most handy for the formation of in-situ doped recessed or raised sources and drains in metal-oxide semiconductor devices.  相似文献   

3.
Thin film samples (10–20 μ thick) of niobium-nickel alloys in the composition range Nb-5 to 95% Ni were vapour quenched by rf sputtering onto fused quartz substrates held at a temperature of 450 K. At room temperature, the electrical resistivity of these alloys lies between 176–210 μΩ cm, and the absolute thermoelectric power S between 2.20–2.52 μV/K. Magnetic susceptibility for Ni0.5Nb0.5 and Ni0.4NB.6 amorphous alloys show a Pauli magnetic behaviour with values of x of about 1.5 × 10?4 and 1.8 × 10?4 emu g?1, respectively.  相似文献   

4.
Zirconium phosphate Zr3(PO4)4 has been synthesized by the sol-gel technique and investigated using X-ray powder diffraction, IR spectroscopy, and differential scanning calorimetry. It has been established that the symmetry of the unit cell, R \(\bar 3\) c, which is characteristic of the NaZr2(PO4)3 (NZP) family, is lowered to P \(\bar 3\) c. The behavior of the zirconium phosphate during heating has been examined using high-temperature X-ray diffraction at temperatures ranging from 25 to 575°C. It has been revealed that the structure of the zirconium phosphate is hardly subjected to expansion due to heating in the temperature ranges 25–125°C (α a < 1 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < 1 × 10?6 K?1) and 325–575°C (α a = ?1.4 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < ?2.4 × 10?6 K?1). In the temperature range 125–325°C, the synthesized compound undergoes a second-order phase transition (upon heating), which is accompanied by the contraction of the structure along all crystallographic directions. Upon cooling in the range from 75 to 25°C, the phase transition is accompanied by the expansion of the structure.  相似文献   

5.
Estimates of Kerr electrooptical sensitivity of several tellurite glasses are presented. The highest value of Kerr coefficient B  190 × 10?16 m V?2 is registered for 0.6TeO2–0.3TlO0.5–0.1ZnO glass. This evidences the prospects of thallium–tellurite glass system for electrooptical applications. A gradual decrease of B from 41 × 10?16 to 26 × 10?16 m V?2 in (1 ? x) TeO2  xNbO2.5 system is revealed for x increasing from 0.1 to 0.15. No crystalline phase was found in that system, thus allowing attributing its Kerr sensitivity to the intrinsic properties of the glass matrix. The Kerr coefficient variation from 66 to 81 × 10?16 m V?2 was observed for 0.85TeO2–0.15WO3 glasses co-doped with small amounts of silver and cerium. The analysis of optical absorption spectra of several silver-containing tellurium–tungsten oxide glasses makes it possible to think that introducing cerium provokes formation of new mid-range orderings.  相似文献   

6.
Oxygen distribution in a Si crystal (100 mm in diameter) has been studied by the absorption method in the range of the absorption band of interstitial oxygen, λ = 5.81 μm. Large-scale fluctuations (~1 cm) of the oxygen concentration (N 0) along the growth axis were determined. Depending on the melt height, the regions of the chaotic and quasiperiodic changes were established, as well as the region of the constant N 0 value, and their relation to turbulent, quasiperiodic, and stationary modes of melt convection in crystallization. The values of the critical Rayleigh number for the melt transition from stationary to quasiperiodic (3 × 103) and from quasiperiodic to turbulent (1.7 × 104) convection modes are determined for growth of silicon crystals by the Czochralski method. The dominating modes of N 0 concentration oscillations at two incommensurable frequencies, f 1 = 1.3 × 10?3 and f 2 = 6 × 10?4 Hz, are assumed to be related to the oscillatory transfer of oxygen from the walls of the quartz crucible to the crystallization front and restructurization of the convective flow pattern of the melt in the course of crystal growth.  相似文献   

7.
Er3+-doped Gd2SiO5 (Er:GSO) single crystal with dimensions of ? 35×40 mm3 has been grown by the Czochralski method. The absorption and fluorescence spectra of the Er:GSO crystal were measured at room temperature. The spectral parameters were calculated based on Judd–Ofelt theory, and the intensity parameters Ω2, Ω4 and Ω6 are obtained to be 6.168×10?20, 1.878×10?20, and 1.255×10?20 cm2, respectively. The emission cross-section has been calculated by Fuechtbauer–Ladenbury formula.  相似文献   

8.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

9.
The EPR and optical spectra of vanadium in glasses of ternary Al2O3P2O5SiO2 and Al2O3P2O5B2O3 systems have been measured. The results were compared with earlier data for vanadium in binary phosphate, aluminophosphate and silicaphosphate glasses and with results of de-Biasi for V4+ in crystalline powder α-crystobalite AlPO4. The superpositions of two hyperfine spectra (ASB-I and ASB-II) were found for many glasses of ternary systems. Both spectra can be attributed to VO2+ ions. The intensity ratio of the ASB-II spectrum to ASB-I depends on glass composition but is great (> 7) for all the glasses. Only the ASB-II spectrum was observed in glasses with low concentration of Al2O3. The spectral parameters of ASB-II spectrum are g| = 1.916–1.921; g 1.980–1.988; A| = (188?190) × 10?4cm?1 and A = (74–77) × 10?4cm?1. Three intense bands at 370, 455 and 700 ans 720 nm observed in these glasses can be attributed to V3+ ions. The excellent agreement of the parameters of the EPR spectrum of V4+ ions in crystalline α-crystobalite AIPO4 and ASB-II spectra in the glasses under study suggest the identical electron structure of the paramagnetic species. This species is believed to be characterized by optical bands at 680 and 790 nm which have been observed by de Biasi. The orbital mixing coefficients indicate strong tetragonal distortion of vanadyl complexes responsible for the ASB-II spectrum. It is assumed that VO2+ ions responsible for this spectrum act as modifiers fitting into the relatively small holes of the three-dimensional networks of phosphate glasses containing no cations of large radii. The microscopic basicity of oxygens in such holes must be about 0.48.  相似文献   

10.
The low field conduction mechanism in amorphous Nb2O5 doped with Nb is investigated by measurements of the ac conductivity as a function of frequency (3 Hz?6 × 106 Hz), dc conductivity as a function of temperature (100–400 K), capacitance as a function of frequency (3 Hz?6 × 106 Hz) and conductance G as a function of voltage at 103 Hz. Loss tangent and quality factor data are also given because of their technical and scientific relevance. Evidence for hopping conduction at low applied fields is presented by the following results: (1) a monotonic increase in ac conductivity σ(ω)αωn where 0.5 < n < 1.0 in the range 3 Hz?6 × 106 Hz; (2) a linear dependence of current on voltage at low fields; and (3) low activation energy for dc conduction with a transition at 210 K to a still lower activation energy; and (4) a decrease in polarizability with frequency. At high fields, E > 105 V/cm, dc conductivity is dominated by the field emission mechanism of the Poole-Frenkel or Poole type.  相似文献   

11.
This work presents a study on the structure, microstructure and properties of 50Li2xB2O3·(50 ? x)P2O5 glasses. The structure has been studied through NMR spectroscopy and the microstructure by TEM. The properties of the glasses are discussed according to their structure and microstructural features. The introduction of boron produces new linkages between phosphate chains through P–O–B bonds, whose amount increases with boron incorporation; at the same time, a depolymerisation of the phosphate chains into Q1-type phosphate units takes place. The introduction of boron produces an increase in Tg together with a decrease in the molar volume. The room temperature electrical conductivity increases with boron content as well. However, B2O3 contents higher than 20 mol% lead to crystallisation of lithium orthophosphate which contributed to hinder ionic conduction of the glasses.  相似文献   

12.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

13.
Samples of CZ n-Si〈Zn〉(111) are prepared by high-temperature zinc-diffusion annealing followed by quenching and are studied by X-ray diffraction. The silicon contains an initial phosphorus impurity and zinc-compensating admixture at concentrations N P = 1.5 × 1014 cm?3 and N Zn = 1 × 1014 cm?3; i.e., the relation N P/2 < N Zn < N P is fulfilled. Microdefects are studied by double- and triple-crystal X-ray diffraction in the dispersion free modes (n, ?n) and (n, ?n, +n). The samples are found to contain microdefects with two characteristic sizes (average sizes of about 1 μm and 70 nm). The interplanar distance in the near-surface layer with a thickness of 0.1 μm is smaller than this parameter in the remaining matrix, the difference being equal to d 0 Δd/d 0 ≈ 2 × 10?5. This layer contains mainly vacancy-type microdefects. The angle between the reflecting planes and the local surface relief is Δψ = (7 ± 1) arcmin.  相似文献   

14.
Organic thin film transistors (OTFTs) with bottom gate and top contact structure had been prepared by inkjet printing. It is found that the surface properties of the substrates have a great influence on the morphology of the inkjet printed droplet and film. An appropriate surface was vital to form a uniform semiconducting film by inkjet printing and also strongly improved the electric characteristics. When a bare SiO2 layer was applied, the best field-effect mobility of inkjet printed OTFT devices was only 2.37 × 10?3 cm2V?1s?1, with an on/off current ratio of 102. When the PETS treatment or the PTS treatment was applied on the SiO2 dielectric layer, the field-effect performances were substantially improved and the best field-effect mobility was enhanced to 8.07 × 10?3 cm?2V?1s?1 and 7.95 × 10?3 cm?2V?1s?1, respectively and with an on/off current ratio of 103.  相似文献   

15.
Microdefects in Si-doped GaAs single crystals grown by the vertical gradient freeze method have been studied with X-ray diffuse scattering. In the case of doping to majority carrier concentrations n ~ 1 × 1018 cm?3, large microdefects with positive dilatation that accompany the initial stage of arsenic precipitation at high temperatures were observed. It is shown that GaAs samples heavily doped with silicon (n ~ 3 × 1018 cm?3) contain large (several micrometers) interstitial microdefects, which can play the role of nucleation regions for new SiAs and SiAs2 phases.  相似文献   

16.
EPR and magnetic susceptibility measurements have been performed on (CuO·2V2O5)(1?x)[2B2O3·K2O] glasses with 0 ? x ? 40 mol. %.For x < 10 mol.%, both Cu2+ and V4+ ions are present mostly as the isolated species. The values of MO coefficients indicate a high covalent degree of the transition metal (TM)-oxygen bonds. Also, the EPR parameters suggest the presence of strong (TM)-oxygen bonds along the 0z axis, which lead to an octahedral (Oh) symmetry component at TM ions sites.In the case of 10 ? x ? 40 mol.%, the dipole-dipole and superexchange interactions occur between transition metal ions, which determine a broad resonance line at g ? 2. The strong interactions between Cu2+ and V4+ ions give rise to the exchange coupled Cu2+ V4+ pairs in the studied glasses with x > 10 mol.% (y > 3.9 mol.%).  相似文献   

17.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

18.
The ionic conductivity of three KTiOPO4 crystals grown from high-temperature solution–melts in combination with the Czochralski technique under different conditions has been investigated. The first crystal was obtained at a cooling rate Vg = 0.2–0.5 mm/day and a ratio of potassium and phosphorus concentrations in the solution–melt [K]/[P] = 2. The other two crystals were grown at a much higher velocity (Vg = 3–7 mm/day) from solution–melts with [K]/[P] = 1.5 and 1. It is shown that the crystal grown upon slow cooling at [K]/[P] = 2 has the lowest ionic conductivity: σ||c = 1.0 × 10–5 and 3 × 10–11 S/cm at 573 and 293 K, respectively.  相似文献   

19.
The title compound is C16H20O5, MW=292.3, orthorhombic,P212121,a=9.741(2),b=29.391(7),c=5.354(1) Å from diffractometer measurements,V=1532.8 Å3,Z=4,D c =1.267 g cm?3,D o =1.271 g cm?3 (ether/1,1,2,2-tetrabromoethane), λ(Mo Kα)=0.71069 Å,F(000)=624,μ=1.02 cm?1, crystal dimensions 0.23×0.23×0.40 mm,R=0.049 for 1164 observed reflections. The molecule contains a possibly significant asymmetric ether linkage between the oxacyclohexane ring and the highly anisotropic benzyl ring. The packing consists of zigzagged chains parallel to thea-axis formed by hydrogen bonds. The chains are separated by van der Waals contacts.  相似文献   

20.
In the course of development of transparent semiconducting oxides (TSOs) we compare the growth and basic physical properties bulk single crystals of ultra-wide bandgap (UWBG) TSOs, namely β-Ga2O3 and Ga-based spinels MgGa2O4, ZnGa2O4, and Zn1-xMgxGa2O4. High melting points of the materials of about 1800 -1930 °C and their thermal instability, including incongruent decomposition of Ga-based spinels, require additional tools to obtain large crystal volume of high structural quality that can be used for electronic and optoelectronic devices. Bulk β-Ga2O3 single crystals were grown by the Czochralski method with a diameter up to 2 inch, while the Ga-based spinel single crystals either by the Czochralski, Kyropoulos-like, or vertical gradient freeze / Bridgman methods with a volume of several to over a dozen cm3. The UWBG TSOs discussed here have optical bandgaps of about 4.6 - 5 eV and great transparency in the UV / visible spectrum. The materials can be obtained as electrical insulators, n-type semiconductors, or n-type degenerate semiconductors. The free electron concentration (ne) of bulk β-Ga2O3 crystals can be tuned within three orders of magnitude 1016 - 1019 cm?3 with a maximum Hall electron mobility (μ) of 160 cm2V?1s?1, that gradually decreases with ne. In the case of the bulk Ga-based spinel crystals with no intentional doping, the maximum of ne and μ increase with decreasing the Mg content in the compound and reach values of about 1020 cm?3 and about 100 cm2V?1s?1 (at ne > 1019 cm?3), respectively, for pure ZnGa2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号