首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of luminescent glasses composed of CaO–B2O3–SiO2 co-doped with cerium oxide (CeO2), terbium oxide (Tb4O7) and samarium oxide (Sm2O3) were prepared by high temperature melting method, aiming to realize the white emitting and tunable luminescent color in the glass matrix. The full colors including blue, green and reddish orange emitting were observed simultaneously in the photoluminescent spectra of ternary Ce/Tb/Sm co-doped CaO–B2O3–SiO2 glasses excited by ultraviolet light. It is shown that the combination of these three emitting allows the realization of white light emitting in ternary co-doped CaO–B2O3–SiO2 glasses. Furthermore, the tunable luminescent color and chromaticity parameters could be realized by varying the content of dopant in the glass matrix, which makes these co-doped glasses good candidates for white light emitting diodes (LEDs).  相似文献   

2.
The optical absorption spectra of cobalt (II) in Tl2OB2O3 glasses have been studied and compared with those in binary alkali borate glasses. In thallium borate glasses cobalt (II) may be present in octahedral and/or in tetrahedral symmetry depending upon the composition of the glass. In low thallium borate glasses cobalt (II) is octahedral while the concentration of tetrahedral cobalt (II) increases with increasing Tl2O content of the glass; the formation of tetrahedral cobalt (II) becomes noticeable when the concentration of Tl2O reaches above the critical concentration of about 19 mol %. The ligand field parameters: 10Dq and B have been calculated from the absorption spectra of cobalt (II) in different glasses and it has been found that the Racah parameter, B, is more in Tl2OB2O3 glasses than those in Na2OB2O3 or K2OB2O3 glasses of corresponding molar composition. This indicates that the donor capacity of the BO4 group in thallium borate glasses is lower than that in alkali borate glasses; this is consistent with the NMR results in Tl2OB2O3 glasses containing less than 20 mol % Tl2O where three BO4 groups have been found to form with each Tl2O unit added.  相似文献   

3.
Raman spectra of some ternary and quaternary glasses in the system Na2OCaOMgOAl2O3SiO2 are presented. The spectra are interpreted in terms of the structural alteration of the glass as the composition is altered from the binary end members to more complicated glasses. Addition of CaO and MgO to soda-silica glasses act only to increase the disorder of the network slightly. Addition of Al2O3 greatly modifies the network. In some soda-lime-aluminosiliscate compositions an estimate can be made of the amount of aluminum in four- and six-fold coordination. It is shown that the amounts of four- and sixfold coordinated aluminum depend on the glass composition.  相似文献   

4.
Electrical conduction in various inorganic glasses was studied as a function of hydrostatic pressure up to 2000 atm and phenomenologically classified into electronic, ionic and mixed types. In electronically conducting glasses such as AsSe chalcogenide glasses and Fe2O3P2O5 glass, the conduction is enhanced by application of pressure. On the other hand in ionically conducting glass such as Na2OB2O3 glass, the conduction is suppressed through the concept of an activation volume. The compatibility of electronic and ionic conduction processes in glasses such as Ag-doped AsSe glasses and Bi2O3B2O3 glass, which have more complex conduction processes, was discussed from these aspects.  相似文献   

5.
Solar furnace melting and fast-quench techniques have been used to prepare calcium aluminate glasses from 75 mol% CaO to 82 mol% Al2O3, which have been studied by Raman spectroscopy. The CaAl2O4 glass spectrum may be interpreted in terms of a fully-polymerized network of tetrahedral aluminate units, which is depolymerized on addition of CaO component analogous to binary silicate systems. The spectra of glasses with higher alumina content than CaAl2O4 may not be simply interpreted and a structural model is proposed which would be consistent with the glass spectra and with observed crystal structures along the CaAl2O4Al2O3 join. This model suggests formation of highly condensed aluminate tetrahedral on initial addition of alumina, with the appearance of aluminate polyhedra of higher average coordination at higher alumina content. Similar high coordination polyhedral are also suggested for a limited composition range along the CaOCaAl2O4 join. These interpretations are compared with the results of a previous study in the SiO2Al2O3 glass system.  相似文献   

6.
Anomalous physical properties (refractive index and density) of B2O3BaTiO3Na2O ternay glasses are determined and discussed on the basis of the structure present in the glasses and evidenced by vibrational Raman spectroscopy.These glasses behave in a manner analogous to the alkali B2O3X2O binary glasses for molar ratio R = basic oxide/B2O3 up to 0.3, with oxygen binding by means of bridging bonds while boron coordination changes from the trigonal to tetrahedral type. The phenomenon is indicated by a progressive weakening of the 806 cm?1 peak (attributable to a breathing vibration of the boroxol unit) and by a concomitant strengthening of the ~775 cm?1 peak (attributable to a vibrational mode of boroxol units, or derived units, containing at least one 4-coordinate boron atom). For higher R values the Raman spectra bring to light the progressive demolition of the structural units responsible for the 775 cm?1 Raman peak, which gives rise (the transformation is complete for R ~ 1) to two new main structural units, orthoborate [BTi4O10]?1 (peak at 845 cm?1) and metaborate BO2? (peak at 715 cm?1).  相似文献   

7.
The purpose of this paper is to examine the potential of three binary borate glasses; namely PbOB2O3, K2OB2O3 and Li2OB2O3 as candidates for fabrication of low optical loss and low cost fiber-glass wave-guides.The importance of ultrasonic measurements as the first step in a systematic search for a glass with low optical loss, is discussed. Results of ultrasonic measurements of PbOB2O3 system are then presented. Using these results and the published results for the K2OB2O3 and Li2OB2O3 systems, estimates of the magnitude of density fluctuations as a function of composition have been made for each system. Comparison with the previously published results on the K2OSiO2 system suggests that out of the three systems chosen, only 50 mole % Li2O50 mole % B2O3 glass is a likely candidate for the production of low optical loss glass fibers.  相似文献   

8.
Once oil is extracted from oil shales, the inorganic solid which remains is from the CaOMgOAl2O3SiO2 system. The material is easily melted and forms a glass upon cooling. Its viscosity in the forming region is actually less than that of commercial soda-lime glass. Shale glasses exhibit excellent dielectric behavior, while their other properties are generally comparable to commercial glasses. These glasses appear to be promising materials for future applications.  相似文献   

9.
Y.H. Yun  P.J. Bray 《Journal of Non》1978,27(3):363-380
The 11B NMR spectra have been used to study the structure of glasses in the system Na2OB2O3SiO2. The fraction of BO4 units, and the fraction of BO3 units with one or two nonbridging oxygens, are measured and analyzed according to a structural model. The results indicate that: (1) for a sodium oxide to boron oxide ratio of 0.5 or less, the Na+1 ions are attracted primarily by the borate network; therefore, the ternary glasses can be viewed as binary sodium borate glasses diluted by SiO2; (2) when the sodium oxide to boron oxide ratio exceeds 0.5, the additional Na2O results in the formation of [BSi4O10]?1 units at the expense of diborate and SiO4 units. In this process, Na+1 ions are still taken up only by the borate network. After all the available SiO4 units are consumed to form [BSi4O10]?1 units, additional Na+1 ions are proportionally shared between the borate and silicate networks.  相似文献   

10.
Measurements of the critical stress intensity factor KIc are reported for glasses in the Na2OSiO2, PbOSiO2, ZnOB2O3, PbOB2O3, Na2OGeO2 and 20Na2O?(80 ? x) B2O3 ? xSiO2 systems. The variations of KIc with composition are not directly related to the simultaneous variations of Young's modulus. A tentative interpretation is given.  相似文献   

11.
The correlation between the basicity of oxygens measured by the Cu(II) ion probe and the non-bonding electron density on oxygens in alkali borate glasses was considered. The basicity was measured for K2OB2O3, Na2OP2O5 and K2SO4ZnSO4 glasses and categorized into two types, δ and π, according to the symmetry property of the bonding between a Cu(II) ion and oxygen. The π basicity for borate and phosphate glasses showed an abrupt increase in the vicinity of 17 and 50 mol% alkali oxide, respectively. The values of π-type basicity varied with the composition of glass, being larger in the order: sulfate < phosphate ? borate, whereas δ basicity was constant irrespective of the glass composition. Such a change of the basicity with the composition of glass was interpreted in terms of behavior of non-bonding levels of the ligand oxygens in a glass network.  相似文献   

12.
X-ray diffraction studies of glasses in the following ternary systems have been made: Na2OMgOSiO2, Na2OZnOSiO2, Na2OCaOSiO2 and Na2OBaOSiO2. The following heavy atom substitutions have been used: Ag for Na and Ge for Si. The changes in the electron radial distribution curves resulting from AgNa replacement can be explained as amplifications of relatively well-defined NaSi distances, which are nearly the same in all the glasses investigated. The GeSi substitution causes changes which can be explained on the basis of isostructural GeSi substitutions.  相似文献   

13.
Glass-forming regions of the systems Na2SSiO2 and Na2SB2O3 have been investigated in order to clarify whether Na2S could be substituted for Na2O in sodium silicate or borate glasses, and the results were interpreted in terms of the structures of silicate and borate glasses. No difference was found in the glass-forming range of SiO2 content between the Na2SSiO2 and Na2OSiO2 systems, and the red color of Na2SSiO2 glasses suggests that the formation of polysulfides in the glass structure is probably due to the entrance of sulfur ions in the non-bridging sites of the glass network. On the other hand, not all of the sulfur added to the glass batches could be retained in the Na2SB2O3 glasses and the amount remaining in the glass products changed depending upon the amount of sodium ions in the glasses. Only a trace of sulfur was observed in the glasses containing less than 13 mol% of Na2S in the batches, but the sulfur content in the glasses increased steeply with sodium content up to 35 mol%, reached the maximum and then decreased slowly with sodium content. The insolubility of sulfur in the glasses with low sodium content was interpreted based on the compositional dependence of basicity of alkali-borate glasses, and the change in solubility of sulfur with sodium concentration was explained based on the well-known boron anomaly caused by the change in the coordination state of boron and on the formation of non-bridging oxygens or sulfurs in the glass structure.  相似文献   

14.
Measurements of ultrasound wave velocity and attenuation have been made between 1.3 K and 400 K in a series of both quenched and heat-treated Na2OB2O3SiO2 glasses. As in many other inorganic glasses, the ultrasound attenuation of both longitudinal and shear waves below room temperature is dominated by a broad and intense loss peak; the height and temperature of the peak maximum are frequency sensitive. The loss peak characteristics are consistent with a structural relaxation mechanism with a distribution of activation energies and this model is used to analyse the data. The features of the acoustic loss peak and also the absolute value and temperature coefficient of ultrasound velocity are strongly dependent on the total Na2O network modifier content of the glasses. The ultrasound wave propagation is also affected by phase-separation inducing heat treatment: a steady rise in the height of the acoustic loss peak and an upward shift in the peak temperature takes place with increasing time of heat treatment at 550°C, a finding which suggests that structural rearrangements are still occurring in the individual glassy phases even after long periods of heat treatment. It is proposed that heat treatment causes migration of Na+ ions away from BOB bonds in the B2O3 rich phase.  相似文献   

15.
A. Paul 《Journal of Non》1974,15(3):517-525
The optical absorption of cobalt (II) in Na2O, 4P2O5 melts and in H2ONaCl mixtures has been studied at different temperatures; the equilibrium: octahedral ? tetrahedral shifted towards the right with increasing temperature in both solvents. The optical absorption of cobalt (II) and nickel (II) has been studied in a series of metaphosphate glasses: Na2OCaOP2O5, and it has been shown that the equilibrium octahedral/tetrahedral ratio of these ions measured at room temperature can be correlated with the transformation temperature of these glasses. The colour of cobalt (II) or nickel (II) containing CaO·P2O5 glasses has been found to be significantly dependent on thermal history; the intensity of optical absorption changed reversibly on heat treatment at the transformation range of the glass.  相似文献   

16.
《Journal of Non》1997,217(1):99-105
27Al and 29Si MAS NMR studies were performed on roller-quenched SiO2Al2O3-glasses with Al2O3 contents ranging from 10 to 60 mol% and on SiO2Al2O3Na2O glasses containing 10 mol% Al2O3 and 2.5 to 10 mol% Na2O. Pure aluminium silicate glasses show NMR peaks at 0, 30 and 60 ppm. The frequency distribution of the different Al-sites is not affected by the glass composition. In glasses of the system SiO2Al2O3Na2O the 30 ppm peak decreases to zero as the Na2O content increases. The 30 ppm peak is assigned to distorted triclustered AlO-tetrahedra, rather than to fivefold coordinated Al. Triclustering of tetrahedra may provide for charge neutrality in glasses with molar excess of Al2O3 over Na2O. As charge balance is increasingly achieved by addition of alkali ions, the tendency of tetrahedral triclustering is reduced, reflected by the disappearance of the 30 ppm peak in glasses containing ≥ 7.5 mol% Na2O.  相似文献   

17.
Silica gels were prepared by two different methods: (1) destabilization of a silica hydrosol (gel 1); (2) hydrolysis and polycondensation of a tetra-methoxysilane (gel 2). The crystallization of the gels was then studied as a function of the temperature by means of X-ray diffraction. It was evident that the crystallization was strongly influenced by the amount of alkali oxides present in the gel. It is effectively the concentration of akali impurities which could explain the lower temperature of crystallization necessary for gel 1 compared with that of gel 2. During the crystallization of the gel containing Na2O the crystalline phase of silica which appears first is the cristobalite; with Li2O it is quartz. The effect of additives such as boric anhydride was studied. This oxide was found to reduce the tendency of the gels to crystallize. The glasses of the system SiO2B2O3 obtained by the hot-pressing of the gels confirmed this phenomenon. Above 10 mol% B2O3 it was impossible to crystallize the gels and the glasses of this system under two hours.  相似文献   

18.
The glass-forming ability of melts in the systems K2O(Nb and/or Ta)2O5Al2O3 as well as those in which K2O was replaced with Li2O, Na2O, Cs2O, BaO or PbO was investigated. Some melts in the systems (K or Cs)2O(Nb and/or Ta)2O5Al2O3 could be made into glasses by cooling, yielding practically useful amounts. The structures of these glasses were discussed on the basis of their infrared spectroscopic and X-ray emission spectroscopic analyses.  相似文献   

19.
The EPR and optical spectra of vanadium in glasses of ternary Al2O3P2O5SiO2 and Al2O3P2O5B2O3 systems have been measured. The results were compared with earlier data for vanadium in binary phosphate, aluminophosphate and silicaphosphate glasses and with results of de-Biasi for V4+ in crystalline powder α-crystobalite AlPO4. The superpositions of two hyperfine spectra (ASB-I and ASB-II) were found for many glasses of ternary systems. Both spectra can be attributed to VO2+ ions. The intensity ratio of the ASB-II spectrum to ASB-I depends on glass composition but is great (> 7) for all the glasses. Only the ASB-II spectrum was observed in glasses with low concentration of Al2O3. The spectral parameters of ASB-II spectrum are g| = 1.916–1.921; g 1.980–1.988; A| = (188?190) × 10?4cm?1 and A = (74–77) × 10?4cm?1. Three intense bands at 370, 455 and 700 ans 720 nm observed in these glasses can be attributed to V3+ ions. The excellent agreement of the parameters of the EPR spectrum of V4+ ions in crystalline α-crystobalite AIPO4 and ASB-II spectra in the glasses under study suggest the identical electron structure of the paramagnetic species. This species is believed to be characterized by optical bands at 680 and 790 nm which have been observed by de Biasi. The orbital mixing coefficients indicate strong tetragonal distortion of vanadyl complexes responsible for the ASB-II spectrum. It is assumed that VO2+ ions responsible for this spectrum act as modifiers fitting into the relatively small holes of the three-dimensional networks of phosphate glasses containing no cations of large radii. The microscopic basicity of oxygens in such holes must be about 0.48.  相似文献   

20.
B11 NMR spectra have been used to study the structure of glasses in the system K2OB2O3P2O5. The results indicate that the glasses do not contain an appreciable number of boron atoms in BO3 units with one or two non-bridging oxygens. The fraction N4 of boron atoms in BO4 units is measured and analyzed according to a structural model containing the following elements. (1) If the binary borophosphate system forms glasses, they consist of a borophosphate (BPO4) network and a borate network for K<1, or a borophosphate (BPO4) network and a phosphate network for K>1, where K = mol.% P2O5/mol.% B2O3. (2) The conversion rates of BO4 units (i.e. the rate of production or destruction by added oxygens) in the borate network and the borophosphate (BPO4) network are given as (+2) and (?0.38), respectively. (3) K+1 ions are proportionally shared between the two networks; (i.e. between the borate and borophosphate (BPO4) networks for K<1, and between the phosphate and borophosphate (BPO4) networks for K>1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号