首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

2.
《Polyhedron》1999,18(20):2665-2671
The reaction of [PtCl2(dppe)] [dppe=1,2-bis(diphenylphosphino)ethane] with two equivalents of the thioureas NHRC(S)NHR (R=H, Me, Et) in the presence of NH4PF6 led to substitution of both chlorides and formation of the complexes [Pt(dppe){SC(NHR)2}2](PF6)2 (1a, R=H; 1b, R=Me; 1c, R=Et). In contrast, the reaction of [PtCl2(dppe)] with one equivalent of the potentially bidentate thiosemicarbazides NHRC(S)NHNR′2 (R=Me, R′=H; R=Et, R′=H; R=Ph, R′=H; R=Me, R′=Me) in the presence of NH4PF6 led to substitution of only one chloride and formation of the complexes [PtCl(dppe){SC(NHR)NHNR2′-S}](PF6) (2a, R=Me, R′=H; 2b, R=Et, R′=H; 2c, R=Ph, R′=H; 2d, R=Me, R′=Me). An X-ray analysis of complex 2d revealed that an intramolecular N–H⋯Cl hydrogen bond [N(2)⋯Cl(1)=3.29(2) Å] helps to stabilise the monodentate co-ordination mode. The chloride ligand can be abstracted from complex 2d by treatment with TlPF6, and this reaction led to formation of [Pt(dppe){SC(NHMe)NHNMe2-S,N}](PF6)2 3d. Reaction of [PtCl2(dppe)] with unsubstituted thiosemicarbazide NH2C(S)NHNH2 in the presence of NH4PF6 resulted in a mixture of products containing mono- and bidentate co-ordinated ligands, [PtCl(dppe){SC(NH2)NHNH2-S}](PF6) 2e and [Pt(dppe){SC(NH2)NHNH2-S,N}](PF6)2 3e. [PtCl2(dppe)] also reacts with two equivalents of NHMeC(S)NHNMe2 in the presence of NH4PF6 to yield [Pt(dppe){SC(NHMe)NHNMe2-S}2](PF6)2 1d, in which the thiosemicarbazide is acting as an S-donor, directly analogous to the thiourea ligands in complexes 1a–c.  相似文献   

3.
《Tetrahedron: Asymmetry》2003,14(11):1495-1501
Enantiotopic selective reduction of 1-(benzofuran-2-yl)ethanones 1ad, 1-(benzofuran-2-yl)-2-hydroxyethanones 4ac and 2-acetoxy-1-(benzofuran-2-yl)ethanones 3ac was performed by baker's yeast for preparation of optically active (benzofuran-2-yl)carbinols [(S)-5ad, (S)-6ac and (R)-6ac, enantiomeric excess from 55 to 93% ee].  相似文献   

4.
New trans-bis(5-R-pyrimidin-2-yl)-1,4-cyclohexanes and-1,2-ethanes (R=C7H15, C6H4OR1, where R1=H, COCH3, C4H9, C5H11, C8H17) have been synthesized. Only nematic mesophases are found from a study of their mesomorphic properties, except for bis[5-(4-octyloxyphenyl)- and-(4-acetoxyphenyl)pyrimidin-2-yl)-cyclohexanes, which also exhibit smectic properties.Novosibirsk Institute of Organic Chemistry of the Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia; e-mail: benzol@nioch.nsc.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 355–360, March, 1999.  相似文献   

5.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

6.
Fourteen new organic molecules A1A4, B1B5, C1C4 and D and a series of transition metal(II) complexes (Ni1Ni9 and Pd1Pd2b) were synthesized and studied in order to characterize the hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands (A1A4 = 2-R2-6-(4,5-diphenyl-1R1-imidazol-2-yl)pyridines, R1 = H or CH3, R2 = H or CH3; B1B5 = 1-R2-2-(pyridin-2-yl)-1R1-phenanthro[9,10-d]imidazoles/oxazoles, R1 = H or CH3, R2 = H or CH3; C1C4 = 2-(6-R2-pyridin-2-yl)-1H-imidazo/oxazo[4,5-f][1,10]phenanthrolines, R2 = H or CH3; D = 2-mesityl-1H-imidazo[4,5-f][1,10]phenanthroline). They were also used to study the substituent effects on the donor strengths as well as the coordination chemistries of the imidazole/oxazole fragments of the hemilabile ligands.All the observed protonation–deprotonation processes found within pH 1–14 media pertain to the imidazole or oxazole rings rather than the pyridyl Lewis bases. The donor characteristics of the imidazole/oxazole ring can be estimated by spectroscopic methods regardless of the presence of other strong N donor fragments. The oxazoles possessed notably lower donor strengths than the imidazoles. The electron-withdrawing influence and capacity to hinder the azole base donor strength of 4,5-azole substituents were found to be in the order phenanthrenyl (B series) > 4,5-diphenyl (A series) > phenanthrolinyl (C series). An X-ray structure of Ni5b gave evidence for solvent induced ligand reconstitution while the structure of Pd2b provided evidence for solvent induced metal–ligand bond disconnection.Interestingly, alkylation of 1H-imidazoles did not necessarily produce the anticipated push of electron density to the donor nitrogen. Furthermore, substituents on the 4,5-carbons of the azole ring were more important for tuning donor strength of the azole base. DFT calculations were employed to investigate the observed trends. It is believed that the information provided on substituent effects and trends in this family of ligands will be useful in the rational design and synthesis of desired azole-containing chelate ligands, tuning of donor properties and application of this family of ligands in inorganic architectural designs, template-directed coordination polymer preparations, mixed-ligand inorganic self-assemblies, etc.  相似文献   

7.
The synthesis, structure, and magnetic properties of the products of the reaction for Cu(hfac)2 (hfac is hexafluoroacetylacetonate) with spin-labeled nitronyl nitroxides 4,4,5,5-tetramethyl-2-(1-R-1H-pyrazol-5-yl)-3-imidazoline-1-oxyl 3-oxides L5/R (R = Me, Et, Pr, Bu), viz., binuclear complex [Cu(hfac)2L5/Me]2 and chain polymer complexes [Cu(hfac)2L5/R]n, are described. The polymer heterospin chains are built according to “head-to-head” (R = Me, Et, Pr, Bu) and “head-to-tail” (R = Pr, Bu) motifs. Compound [Cu(hfac)2L5/Me]2 is characterized by the ability to reveal the reversible effect of thermally induced spin transition at a temperature about 75 K (without hysteresis). In the set of heterospin CuII compounds with spin-labeled pyrazoles, this is the earlier unknown example of a molecular complex exhibiting a similar magnetic anomaly.  相似文献   

8.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

9.
《Tetrahedron: Asymmetry》2003,14(13):1943-1949
Kinetic resolution of racemic 1-(benzofuran-2-yl)ethanols rac-1ad was performed by lipase-catalyzed enantiomer selective acylation (E≫100) yielding (1R)-1-acetoxy-1-(benzofuran-2-yl)ethanes (R)-2ad and (1S)-1-(benzofuran-2-yl)ethanols (S)-1ad in highly enantiopure form. The degree of enantiomer selectivity for enzymatic alcoholysis/hydrolysis processes starting from racemic 1-acetoxy-1-(benzofuran-2-yl)ethane rac-2 was also tested under various conditions including supercritical CO2 medium. Racemization-free lipase-catalyzed ethanolysis of the (1R)-1-acetoxy-1-(benzofuran-2-yl)ethanes (R)-2ad yielded almost quantitatively the enantiopure (1R)-1-(benzofuran-2-yl)ethanols (R)-1ad.  相似文献   

10.
Bis(silylamino)tin dichlorides 1 [X2SnCl2 with X=N(Me3Si)2 (a), N(9-BBN)SiMe3 (b), N(tBu)SiMe3 (c), and N(SiMe2CH2)2 (d)] were prepared from the reaction of two equivalents of the respective lithium amides (Li-a-d) with tin tetrachloride, SnCl4, or from the 1:1 reaction of the respective bis(amino)stannylene with SnCl4. The compounds 1 react with two equivalents of lithium alkynides LiCCR1 to give the di(1-alkynyl)-bis(silylamino)tin compounds X2Sn(CCR1)2, 2 (R1=Me), 3 (R1=tBu), and 4 (R1=SiMe3). Problems were encountered, mainly with LiCCtBu as well as with 1b, since side reactions also led to the formation of 1-alkynyl-bis(silylamino)tin chlorides 5-7 and tri(1-alkynyl)(silylamino)tin compounds 8 and 9. 1,1-Ethylboration of compounds 2-4 led to stannoles 10, 11, and in the case of propynides, also to 1,4-stannabora-2,5-cyclohexadiene derivatives 12. The molecular structure of the stannole 11b (R1=SiMe3) was determined by X-ray analysis. The reaction of 2a and d with triallylborane afforded novel heterocycles, the 1,3-stannabora-2-ethylidene-4-cyclopentenes 14. These reactions proceed via intermolecular 1,1-allylboration, followed by an intramolecular 1,2-allylboration to give 14, and a second intramolecular 1,2-allylboration leads to the bicyclic compounds 15.  相似文献   

11.
Reactions of (RC5H4)2Cr2(SCMe3)2S(I, R = H; II, R = Me) with (PPh3)2PdCl2 in benzene at 20°C gives trinuclear complexes (RC5H4)2Cr2Cl23-S)(μ-SCMe3)2Pd(PPh3)(III, R = H; IV, R = Me). The structure of IV as a monobenzene solvate is established by an X-ray analysis (black-green triclinic crystals space group P1 with a = 11.403(4), b = 14.933(5), c = 14.131(5) Å, α = 99.13(3), β = 112.72(3), γ = 95.65(3)°, V = 2201.6 Å, Z = 2; IV·C6H6). The structure was solved by direct methods and refined in an anisotropic approximation to R = 0.046, Rw = 0.058 for 7643 reflections with I ? 2σ(I). In the molecule of IV metal atoms are separated by non-bonding distances (Cr … Cr 4.079(I), Cr … Pd 3.230(I) and 3.380(I) Å) but linked by the bridging tridentate sulphur atom (CrS 2.339(2) and 2.329(2), PdS 2.327(2) Å), and two SCMe3 groups between Pd and Cr (CrS 2.396(2) and 2.403(2), PdS 2.350(2) and 2.381(2) Å, Cr?Pd 85.14(6) and 89.92(6)°). The Cl atoms are transferred from Pd to Cr atoms (CrCl 2.308(2) Å) and being terminally coordinated are in trans-positions to each other (as well as η-CH3C5H4 rings) with respect to the Cr2Pd plane. Cr atoms in III and IV exhibit ferromagnetic exchange interactions over the Cr?Cr system (+2J = 28 and 11 cm?1, respectively).  相似文献   

12.
Treatment of LiC(SiMe2H)3]·2THF (1) with alkeny1chlorosilanes produced sterically hindered alkenylsilanes (410) of structure H2C=CH---(CH2)nSiRR′C(SiMe2H)3 (R=Me; R′=Me or Cl; n=0, 1, or 4). The Peterson reaction of 1 with carbonyl compounds gave sterically hindered olefins R(R′)C=C(SiMe2H)2. Pt or Rh catalyzed intramolecular hydrosilylation of H2C=CHSiMe2C(SiMe2H)3 (4) occurred to produce a new 1,3-disilacyclobutane derivative 15. Intermolecular hydrosilylation was favored for 5, 8, and 10, producing oligomeric products.  相似文献   

13.
The reaction of (hexyl)HC(mim)2 (1, mim=N-methyl-imidazol-2-yl) with (cod)PdMeCl in C6H6 yields {(hexyl)HC(mim)2}Pd(Me)Cl (3). The photochemical reaction of 3 with CH2Cl2 at 23 °C in ambient room light yields {(hexyl)HC(mim)2}Pd(CHCl2)Cl (4). It is proposed that this reaction proceeds by homolytic scission of the PdMe bond of 3.  相似文献   

14.
The synthesis and characterization of new symmetrical FeII complexes, [FeLA(NCS)2] (1), and [FeLBx(NCS)2] (24), are reported (LA is the tetradentate Schiff base N,N′-bis(1-pyridin-2-ylethylidene)-2,2-dimethylpropane-1,3-diamine, and LBx stands for the family of tetradentate Schiff bases N,N′-bis[(2-R-1H-imidazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, with: R = H for LB1 in 2, R = Me for LB2 in 3, and R = Ph for LB3 in 4). Single-crystal X-ray structures have been determined for 1 (low-spin state at 293 K), 2 (high-spin (HS) state at 200 K), and 3 (HS state at 180 K). These complexes remain in the same spin-state over the whole temperature range [80–400 K]. The dissymmetrical tetradentate Schiff base ligands LCx, N-[(2-R2-1H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-ylethylidene)-2,2-R1-propane-1,3-diamine (R1 = H, Me; R2 = H, Me, Ph), containing both pyridine and imidazole rings were obtained as their [FeLCx(NCS)2] complexes, 510, through reaction of the isolated aminal type ligands 2-methyl-2-pyridin-2-ylhexahydropyrimidine (R1 = H, 57) or 2,5,5-trimethyl-2-pyridin-2-ylhexahydropyrimidine (R1 = Me, 810) with imidazole-4-carboxaldehyde (R2 = H: 5, 8), 2-methylimidazole-4-carboxaldehyde (R2 = Me: 6, 9), and 2-phenyl-imidazole-4-carboxaldehyde (R2 = Ph: 7, 10) in the presence of iron(II) thiocyanate. Together with the single-crystal X-ray structures of 7 and 9, variable-temperature magnetic susceptibility and Mössbauer studies of 510 showed that it is possible to tune the spin crossover properties in the [FeLCx(NCS)2] series by changing the 2-imidazole and/or C2-propylene susbtituent of LCx.  相似文献   

15.
The microbiological reduction of (±)-l-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-one (4) and (±)-1-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-butan-2-one (5) by Rhodotorula mucilaginosa was investigated. Both enantiomers of 4 are reduced stereospecifically to corresponding alcohols; (+)-(2S, l'R)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-ol (6) and (-)-(2S,l'S)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-ol (7). p ]The substrate selectivity in the reduction of 5 was observed: R enantiomer of 5 yields stereospecifically (+)-(2S,1'R)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-butan-2-ol (8) while S(-)5 remains unchanged.  相似文献   

16.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

17.
The reaction of Ru3(CO)12 with MeO2C(H)C=C=C(H)CO2 Me has yielded two isomeric productsanti-Ru2(CO)6[μ-η 3-η 1-MeO2C(H)CCC(H)CO2Me],1 in 70% yield andsyn-Ru2(CO)6[μ-η 3-η 1-MeO2C(H)CCC(H)CO2Me],2 in 5% yield. Both compounds were characterized by single crystal X-ray diffraction analysis. Both products are diruthenium complexes with bridging di(carboxylate)allene ligands in which the oxygen atom of the carbonyl group of one of the carboxylate groupings is coordinated to one of the metal atoms. Compound1 isomerizes partially to2 at 68°C. Crystal Data for1: space group=P21/n,a=11.131(1) Å,b=10.228(2) Å,c=15.978(2) Å,β=102.01(1)°,Z=4, 1653 reflections,R=0.025; for2: space group=P $\bar 1$ ,a=9.340(1) Å,b=14.925(4) Å,c=6.778(2) Å,α=99-02(2)°,β=104 62(2)°,γ=94.58(2)°,Z=2, 1857 reflections,R=0.027.  相似文献   

18.
The diiron ynamine complex [Fe2(CO)7{μ-CR)C(NEt2)}] (1:R=Me,2:R = C3H5.3:R=SiMe3.4:R = Ph) reacts at room temperature with diphenyldiazomethane Ph2CN2, in hexane to yield complexes [Fe2(CO)6{C(R)C(NEt2)N (NCPh2)] (5a:R=Me,6a:R=C3H5.7a R=SiMe3.8a:R=Ph) resulting from the insertion of the terminal nitrogen atom into the Fe=C carbene bond. Insertion the second nitrogen atom and formation of compounds [Fe2(CO)6zμ-C(R)C(NEt2)NN(CPh2)}] (5b:R=Me,6b:R=C3H5,7b:R=SiMe3,8b:R=Ph) is observed when compounds5a-5a are treated in refluxing hexane. Transformation of compoundsa tob is also obtained at room temperature within a few days. All compounds were identified by their1H NMR spectra. Compounds6a, 7a, 8a, and8b were characterized by single crystal X-ray diffraction analyses. Crystal data: for6a: space group = P21/n,a=12.853(1) A,b=24.800(7) A,c=8.947(6) A,β=99.29(3)°,Z=4, 2227 rellectionsR=0,038; for7a: space group=Pl,a=ll.483(4) A,b=14.975(4) A,c = 17.890(8) A,α = 82.80(3)°,β=94.29(7)°,γ=85.42(2),Z = 4, 5888 reflectionR = 0.035: for8a: space group = Pcab.a = 31.023(8) A.b=20.137(1) A.c=9.686(2) A.Z=8. 1651 reflections,R=0.071; for8b: space group=P21/n,a=21.459(4),b=10,100(3) A,c=28,439(8) A,ß=103.86(4)°,Z=8. 2431 reflections.R=0.057.  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(21):2976-2980
The insect pheromone (2S,3R,7R)-3,7-dimethyltridec-2-yl acetate 1-Ac was prepared from diastereomerically enriched (2S1,3R1,7R)-1, which in turn was obtained by the coupling of racemic 3,4-dimethyl-γ-butyrolactone with (7S)-2-methyloctyllithium, followed by a Wolff–Kishner reduction of the resulting ketone. Conversion of (2S1,3R1,7R)-1 to the corresponding alkyl hydrogen phthalate and diastereomer salt formation with (S)-PhCHMeNH2 provided after several crystallizations individual diastereomer, which was later transformed into target 1-Ac after hydrolysis and acylation.  相似文献   

20.
Synthesis of Mono- and Bis(silyl)hydroxylamines Silylamines reacts with hydroxylaminehydrochlorid to give the monosilylhydroxylamines: R2FSiONH2 (R = CMe3 1 ), R2R′SiONH2 (R = CMe3, R′ = Me 2 ), R2(NH2)SiONH2 (R = CMe3 3 ). The reaction of 1 in the present of HCl-acceptors or the reaction of lithiated 1 with Me3SiCl or F2Si(CMe3)2 leads to the formation of bis(silyl)hydroxylamines, (Me3C)2FSiONHSiMe3 4 , and (Me3C)2FSiONHSiF(CMe3)2 5 . The lithium derivatives of Me3SiONH2 and 2 react with fluorosilanes to the bis(silyl)hydroxylamines: Me3SiONHSiFRR′ (R = R′ = CMe3, 6 , R = CMe3, R′ = F 7 , R = R′ = NMeSiMe3 8 ), (Me3C)2MeSiNHOSiFRR′ (R = CMe3, R′ = F 9 , R = (Me3C)3C6H2, R′ = F 10 , R = R′ = CMe3 11 , R = R′ = CHMe2 12 ). The bis(silyl)hydroxylamines 4 and 6 are structure isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号