首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The low field conduction mechanism in amorphous Nb2O5 doped with Nb is investigated by measurements of the ac conductivity as a function of frequency (3 Hz?6 × 106 Hz), dc conductivity as a function of temperature (100–400 K), capacitance as a function of frequency (3 Hz?6 × 106 Hz) and conductance G as a function of voltage at 103 Hz. Loss tangent and quality factor data are also given because of their technical and scientific relevance. Evidence for hopping conduction at low applied fields is presented by the following results: (1) a monotonic increase in ac conductivity σ(ω)αωn where 0.5 < n < 1.0 in the range 3 Hz?6 × 106 Hz; (2) a linear dependence of current on voltage at low fields; and (3) low activation energy for dc conduction with a transition at 210 K to a still lower activation energy; and (4) a decrease in polarizability with frequency. At high fields, E > 105 V/cm, dc conductivity is dominated by the field emission mechanism of the Poole-Frenkel or Poole type.  相似文献   

2.
The dielectric constant and conductivity of 80% V2O5: 20% P2O5 glass has been measured in the frequency range 102 to 109Hz and in the temperature range 80 to 350°K. It is shown that the dielectric behaviour over these ranges is described by a Debye type relaxation process with distribution of relaxation times. A method is proposed to determine the width of distribution from the data at fixed frequencies and different temperatures. The width of distribution increases at frequencies ω > 10/τ, which leads to an a.c. conductivity at these frequencies almost linearly proportional to frequency and independent of temperature. The estimated value of the static dielectric constant of about 30 was found to decrease with temperature while the infinite frequency dielectric constant of 10 was independent of temperature. The carrier concentration calculated from the dielectric relaxation time and the d.c. conductivity through a thermal diffusion model shows reasonable agreement with direct measurement using electron paramagnetic resonance.  相似文献   

3.
The dc conductivity of semiconducting vanadium tellurite glasses of compositions in the range 50 to 80 mol% V2O5 has been measured in the temperature region 77 to 400 K. Measurements have been made on annealed samples at different annealing temperatures. Annealing the samples at temperature of about 250°C causes the appearance of a complex crystalline phase resulting in an increase of conductivity. Results are reported for amorphous samples of different compositions. The conductivity of tellurite glasses is slightly higher than the corresponding composition of phosphate glasses, but the general trend of the increase of conductivity and decrease of high temperature activation energy with increasing V2O5 content is similar in the two systems. The data have been analysed in the light of existing models of polaronic hopping conduction. A definite conclusion about the mechanics of conduction (adiabatic or nonadiabatic) is difficult in the absence of a precise knowledge of the characteristic phonon frequency v0. Adiabatic hopping is indicated for v0~1011 Hz, however this value leads to unreasonably low value for the Debye temperature θD, and higher values for v0~1013 hz satifiies the conditions for nonadiabatic hopping which appears to be the likely mechanism of conduction in V2O5TeO2 glasses. The low temperature data (< 100 K) can be fitted to Mott's variable range hopping, which when combined with ac conductivity data gives reasonable values of α, but a high value for the disorder energy.  相似文献   

4.
Elastic and dielectric properties of CdP2, ZnP2, and ZnAs2 single crystals are investigated at frequencies of 102, 103, 104, 106, and 107 Hz in the [00l], [h00], and [hk0] directions in the temperature range 78–400 K. The elastic constants, the Gruneisen parameters, and the force constants of the crystals are calculated from the measured ultrasonic velocities. The elastic constants Cij decrease with an increase in temperature and anomalously change in narrow (ΔT = 10–20 K) temperature ranges. The permittivity sharply increases from ε ≈ 7–14 at 78–150 K to ε ≈ 102–103 in the temperature range 175–225 K without any signs of a structural phase transition. The behavior of the temperature-frequency dependences of the complex permittivity ε*(f, T) is typical of relaxation processes. The dielectric relaxation in AIIB 2 V is considered on the basis of the model of isolated defects. The conuctivity σ of the single crystals under study is a sum of the frequency-dependent (hopping) conductivity σh and the conductivity σs that is typical of semiconductors. The hopping conductivity increases with an increase in frequency according to the law σ h fα, where α < 1 at low temperatures and α > 1 at high temperatures.  相似文献   

5.
The ionic conductivity σ of KMgCr(MoO4)3 crystal has been investigated in a temperature range of 575–932 K by impedance spectroscopy in the frequency range of (5–5) × 105 Hz. Ternary molybdate was obtained from the initial MgMoO4 and KCr(MoO4)2 reagents by solid-phase technique in air at 923–973 K for 200 h. The temperature dependence σ(T) of a ceramic sample exhibits a jump of σ by a factor of about 4 at 833 ± 5 K, which is caused by the first-order phase transition. The σ value above the phase-transition temperature reaches 6 × 10–4 S/cm (932 K) at an ion-transport activation enthalpy of 0.84 ± 0.05 eV. The most likely carriers in KMgCr(MoO4)3 are K+ cations.  相似文献   

6.
Measurements of the electrical conductivity of Ag-doped bulk As2S3 glasses have been made as functions of temperature, pressure, frequency and Ag doping level. A Debye-like loss peak was observed near 104 Hz. The frequency of the loss peak is dependent on temperature, pressure and doping level, but these dependences are different from those of the dc conductivity. The ac loss is attributed to the Maxwell-Wagner losses characteristic of inhomogeneous materials. The materials are presumed to be inhomogeneous mixtures of As2S3 and Ag2S. We have also searched unsuccessfully for ac conductance in several bulk chalcogenide glasses.  相似文献   

7.
Single crystals of the composition PbFe1/2Ta1/2O3 are grown by the method of mass crystallization from flux. It is established that, unlike the PbFe1/2Ta1/2O3 ceramic, the synthesized single crystals possess pronounced relaxor properties: the maximum of the dielectric constant is diffuse and its temperature, T m, increases by more than 70 K with an increase in the frequency from 102 to 106 Hz. It is assumed that the unusual properties of the PbFe1/2Ta1/2O3 crystals are caused by mesoscopically inhomogeneous compositional ordering and comparatively high conductivity providing favorable conditions for the appearance of the volume-charge and thermal electron polarization.  相似文献   

8.
Methods of growth of KTiOPO4 and K1 ? x Rb x TiOPO4 crystals of high optical quality have been optimized. The dielectric properties (permittivity and conductivity) of the crystals grown have been investigated at frequencies from 102 to 106 Hz in the temperature range from 100 to 350 K, along the [001] crystallographic direction. It is established that partial substitution of K+ ions with Rb+ ions leads to a decrease in the permittivity and conductivity.  相似文献   

9.
The electrical conductivity and thermoelectric power of liquid AgSb Te2 have been investigated as a function of temperature. Experimental data are analyzed in terms of a recent model proposed by Mott. The activation energy for electrical conductivity and thermoelectric power is found to be approximately 0.50 eV with a large temperature coefficient γ ~ 7 × 10?4 eV/deg K. The gradual transition from a semiconducting to a metallic behaviour has been observed at high temperature.  相似文献   

10.
We report the results of the measurement and analysis of the complex conductivities of two high polymers over the frequency range 102–106 Hz, and temperature range 70–300 K. Giant polarization of the nomadic type is observed, with dielectric constants ranging from about 50 to 6000 in these aromatic hydrocarbon polymers. The complex conductivities resemble power law behavior, σac = s (with s in the range 0.7–1.0) in some temperature ranges, and deviates from this in others. The dc conductivity and the real part of the ac conductivity at various frequencies follow a T?14 law. The dielectric constant varies as expected for nomadic polarization in long-chain molecules. An attempt is made to develop an understanding of the observed dependences of the complex conduction or polarization on temperature and frequency in terms of interchain and intrachain transport processes.  相似文献   

11.
Single crystals of L‐Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz–5 MHz) and temperature (307‐368K) and the activation energy is 77 μeV. The thermal transport properties such as thermal conductivity (0.88 ± 0.02 W/mK) and specific heat capacity (482±24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n2, is found to be of the order of 10−13 cm2/W by the Z‐scan technique.  相似文献   

12.
Dielectric properties in “pure” and partly deuterated DMAAS crystals have been studied within the frequency range 40?2–107 Hz in the vicinity of 110 K. It is established that the crystals possess relatively high conductivity, 10?4–10?7 Ω?1 m?1, which is explained by their crystal structure. The frequency dependence of the complex dielectric constant has two linear segments, which indicate the change in the charge-carriers motion in the vicinity of 110 K. It is revealed that at low temperatures, conductivity increases at higher frequencies.  相似文献   

13.
Alo Dutta  T.P. Sinha  S. Adak 《Journal of Non》2008,354(33):3952-3957
The frequency dependent conductivity and dielectric relaxation of alkali ions in some soda-lime-silicate (Na2O-CaO-SiO2) glasses are investigated over a frequency range from 50 Hz to 1 MHz and in a temperature range from room temperature to 603 K by using alternating current impedance spectroscopy. The conductivity isotherms show a transition from frequency independent dc region to dispersive region where the conductivity continuously increases with increasing frequency. The electric modulus representation has been used to provide comparative analysis of the ion transport properties in these glasses. The scaling behavior of imaginary part of electric modulus indicates that all dynamical processes occurring at different frequencies give the same activation energy.  相似文献   

14.
Protonic conductivity measurements are reported for H3PW12O40x21H2O single crystals in the temperature range 77 to 303 K. At room temperature, the conductivity is 0.18 Sm‐1 and falls to a minimum of 0.26×10‐3 Sm‐1 at 188 K. An anomalous behavior in conductivity observed in the temperature range 263 to 283 K is reported and it is essentially due to the disordered structure of water molecules. The activation energy determined from the least squares analysis in the temperature range 278 to 303 K and 188 to 273 K are 0.38 and 0.15 eV respectively. The observed conductivity parameter results support the vehicle mechanism as the proton conduction mechanism in this single crystal. Using the Nernst‐Einstein relation, the proton diffusion coefficient is calculated and found to be 1.29×10‐11 m2s‐1 at room temperature. Steady state photoconductivity is measured at room temperature for various intensities and the material is found to be photosensitive. The variation of photocurrent with different illumination levels is found to be linear in these single crystals. The transient photoconductivity measurement shows that the photo‐induced responses are moderate in the beginning and slow during decay process with respect to time.  相似文献   

15.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

16.
The frequency and time dependence of the ac conductivity were measured within incommensurate phase in the frequency range 101‐107 Hz and analyzed. The electrical conductivity decreases with decreasing temperature, then saturates in mentioned temperature interval. The ac conductivity is proportional to ws. The value f s decreases with increasing temperature which suggests hopping conduction mechanism. The time dependence of the conductivity exhibited exponential decay. It shows two conductivity relaxations in mentioned temperature interval. Moreover, the characteristic relaxation times decrease with decreasing annealing temperature. The two different relaxation times refer to two different incommensurate ordering in mentioned temperature interval. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The frequency and temperature dependence of ac conductivity and optical absorption have been measured for four Tl-S glasses, TlS, Tl2S3,TlS2 and Tl2S5, prepared by a melt-quenching method. The ac conductivity has been measured over a frequency range 0.1 Hz to 1.8 GHz and a temperature range 190-273 K. The optical absorption was measured at room temperature over a wavelength range 200-2600 nm. We have determined the electrical and optical band gaps from the experimental results. For each glass, the electrical band gap is larger than the optical band gap and the difference increases with increasing sulfur concentration. The frequency dependence of ac conductivity varies with composition of the glasses. We suggest that these results are due to an increase of localized states in the band gap with increasing sulfur concentration.  相似文献   

18.
The temperature dependence of the field effect response permits an unambiguous determination of the identity of those states responsible for electrostatic screening in the amorphous chalcogenides. We observe (1) in As2Te3, field effect screening by localized states at the Fermi level at low temperatures (~ 1019 cm?3 eV?1) and by mobile charge carriers (~ 1018 cm?3 at 300 K) at high temperatures, and a transition from p-type to two-carrier (primarily n-type) conductivity as the temperature is raised above ~320 K; (2) in As2SeTe2, screening by mobile charge carriers (~ 1018 cm?3 at 300 K) with strongly type conductivity; (3) in As2Se2Te, screening by localized states at the Fermi level (~ 1019 cm?3 eV?1) with strongly p-type conductivity; and (4) in Sb2Te3, a very high density of localized states at the Fermi level (~ 2 × 1020 cm?3 eV?1) with both electron and hole contributions to the conductivity. Correlation with thermoelectric power results suggests that the p-type conductivity in As2Te3 is due to near-equal contributions from two processes: hopping in localized states plus extended state conduction. Aging and annealing behavior is described with the aid of a “chaotic potential model” that appears to be able to account for large changes in mobile carrier density that leave the conductivity unaltered.  相似文献   

19.
The electrical and dielectric properties of 10ZnO-30Fe2O3-60P2O5 (mol%) glasses, melted at different temperatures were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 3 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe(II)/[Fe(II) + Fe(III)] ratio. With increasing Fe(II) ion content from 17% to 37% in these glasses, the dc conductivity increases. Procedure of scaling conductivity data measured at various temperatures into a single master curve is given. The conductivity of the present glasses is made of conduction and conduction-related polarization of the polaron hopping between Fe(II) and Fe(III), both governed by the same relaxation time, τ. The high frequency dispersion in electrical conductivity arises from the distribution in τ caused by the disordered glass structure. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions.  相似文献   

20.
Abstract

(Benzophenone)9(KI)2I7, CHCl3 single crystals have a golden metallic reflection on the surfaces parallel to the polyiodine chain axis. The compound is a member of a large class of channel-like inclusion compounds in which isolated iodine atom chains are the only possible conducting strands in an otherwise insulating matrix. The (contactless) microwave conductivity is ~ 10 Ω?1 cm?1 at room temperature with an activation energy of ~0.03 eV down to 70°K, while the dc conductivity is ~10?-6. Conductivity is strongly frequency dependent and contact problems are severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号