首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mono-cyclopentadienyl complexes CpVX2(PR3)2 and Cp′VX2 (PR3)2 (Cp = η5- C5H5; Cp′ = η5-C5H4Me; R = Me, Et; X = Cl, Br) have been prepared by reaction of VX3(PR3)2 with CpM (M = Na, T1, SnBun3, 1/2 Mg) or Cp′Na. Attempts to prepare analogous complexes with other phosphine ligands, PPh3, PPh2 Me, PPhMe2, Pcy3, DMPE and DPPE failed. Reduction of CpVCl2(PEt3)2 with zinc or aluminium under CO (1 bar) offers a simple method for the preparation of CpV(CO)3(PEt3). The crystal structure of the trimethylphosphine complex CpVCl2(PMe3)2 is reported.  相似文献   

2.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

3.
[Pd(C6F5)2(CNR)2] (R = Cy, But, p-MeC6H4 (p-Tol)) react with [PdCl2(NCPh)2] to give [Pd2(μ-Cl)2(C6F5)2(CNR)2]. In refluxing benzene insertion of isocyanide into the C6F5Pd bonds occurs only for R = p-Tol, to give a imidoyl bridged polynuclear complex cis-[Pd2 (μ-Cl)2[μ-C(C6F5) = N(Tol-p)]2n]. This complex reacts with (a) Tl(acac) to give [Pd2{μ-C(C6F5) = N(Tol-p)}2(acac)2]; (b) neutral monodentate ligands to afford dimeric complexes [Pd2{μ-C(C6F5) = N(Tol-p)}2Cl2L2] (L = NMe3, py, 4-Me-py, SC4H8), and (c) isocyanides to give insoluble complexes of the same composition which are thought to be polymeric, [Pd(CNR)Cl{μ-C(C6F5) = N(p-Tol)}]n (R = p-Tol, Me, But). Thermal decomposition of cis-[Pd2 (μ-Cl)2 [μ-C(C6F5) = N( p-Tol)]2n] gives the diazabutadiene species (p-Tol)NC(C6F5)C(C6F5)N(p-Tol) in high yield.  相似文献   

4.
The reaction of M3(CO)12 (M = Ru, Fe) with excess bi-2,7-cyclooctadienyl (C16H22) 1 gave a mononuclear complex M(CO)3(1,2,1′-2′-η4-C16H22), 2a (M = Ru) or 3a (M = Fe), in good yield. Treatment of 2a with Fe3(CO)12 or reaction of 3a with Ru3(CO)12 gave the heterobimetallic complex RuFe(CO)6(C10H22) consisting of a ruthenacyclopentadiene unit coordinated to an Fe(CO)3 fragment, as confirmed by 1H NMR and X-ray studies. The corresponding homobimetallic complex Ru2(CO)6(C16H22) was obtained from the 1:1 reaction of 2a with Ru3(CO)12, while the direct reaction of 1 with Ru3(CO)12 gave Ru2(CO)6(C16H20) preferentially with a loss of two hydrogen atoms. The pathway for formation of these bimetallic complexes was interpreted as a dehydrogenative metallacyclization followed by hydrogen transfer.  相似文献   

5.
Stereochemical non-rigidity in the complexes [M(CO)5( H2)] (M = Cr or W) has been studied by dynamic nuclear magnetic resonance spectroscopy. In the temperature range ca. −100 to 120°C two intramolecular processes were observed, namely pyramidal atomic inversion about sulphur atoms, and a commutation of the M(CO)5 moiety between coordination sites on different sulphur atoms. Accurate energy barriers for both processes have been obtained by detailed computer simulations of the static and the dynamic spectra. The magnitudes of ΔG≠ (298.15 K) are compared with those reported for related complexes. The exact nature of the M(CO)5 shift cannot be unambiguously assigned from the observed spectral line-shape changes. Two possible mechanisms are proposed and discussed.  相似文献   

6.
Reactions of (RC5H4)2Cr2(SCMe3)2S(I, R = H; II, R = Me) with (PPh3)2PdCl2 in benzene at 20°C gives trinuclear complexes (RC5H4)2Cr2Cl23-S)(μ-SCMe3)2Pd(PPh3)(III, R = H; IV, R = Me). The structure of IV as a monobenzene solvate is established by an X-ray analysis (black-green triclinic crystals space group P1 with a = 11.403(4), b = 14.933(5), c = 14.131(5) Å, α = 99.13(3), β = 112.72(3), γ = 95.65(3)°, V = 2201.6 Å, Z = 2; IV·C6H6). The structure was solved by direct methods and refined in an anisotropic approximation to R = 0.046, Rw = 0.058 for 7643 reflections with I ? 2σ(I). In the molecule of IV metal atoms are separated by non-bonding distances (Cr … Cr 4.079(I), Cr … Pd 3.230(I) and 3.380(I) Å) but linked by the bridging tridentate sulphur atom (CrS 2.339(2) and 2.329(2), PdS 2.327(2) Å), and two SCMe3 groups between Pd and Cr (CrS 2.396(2) and 2.403(2), PdS 2.350(2) and 2.381(2) Å, Cr?Pd 85.14(6) and 89.92(6)°). The Cl atoms are transferred from Pd to Cr atoms (CrCl 2.308(2) Å) and being terminally coordinated are in trans-positions to each other (as well as η-CH3C5H4 rings) with respect to the Cr2Pd plane. Cr atoms in III and IV exhibit ferromagnetic exchange interactions over the Cr?Cr system (+2J = 28 and 11 cm?1, respectively).  相似文献   

7.
η5-C5H5(CO)2FeNa reacts with the benzimide chlorides C6H5(Cl)CNR (R  CH(CH3)2, C6H5) in boiling THF to give the η1-iminoacyl complexes η5-C5H5 (CO)2Fe[η1-C(C6H5)NR]. Alternatively, the new Fe complexes [η5-C5H5(CO)FeC(C6H5)N(CH3)C(C6H5)NCH3PF6 (IV) and [η5-C5H5(CO)2FeC(C6H5)N(CH3)C(C6H5)NCH3]PF6 (V) are formed under the same conditions, if R  CH3. Hudrolysis of the CN single bond of the ligand in V, not stabilized by a chelate effects as in IV, results in the formation of [η5-C5H5(CO)2FeC(C6H5)NHCH3]PF6 (VII). Reaction of η5-C5H5(CO)2 with N-benyzylbenzimido chloride yields η5-C5H5(CO)2FeCH2C6H5 as the only isolated product.  相似文献   

8.
Reaction of [{Ru(η-arene)Cl2}2] (arene = C6H6, 1,4-MeC6H4CHMe2) with NaNH2 in CH3CN gives a dark oil which upon treatment with ROH/NaBPh4 (R = Me, Et) gives the triple bridged complexes [Ru2(η-arene)2(OR)3] [BPh4]. The structure of the benzene complex (R = Me) has been verified by X-ray analysis. The crystals are monoclinic, space group P21/n with a 11.725(4), b 15.573(5), c 18.739(2) Å; β 103.29(2)°. These complexes undergo reactions with tertiary phosphines and hydrogen halides. There is also spectroscopic evidence for intermolecular exchange of the bridging alkoxo ligands on mixing pure solutions of the [M2(arene)2(OR)3]+ cations (M = Ru, Os). Reaction of [{Ru(η-arene)Cl2}2] with Pb(SEt)2 in CH3CN gives the analogous [Ru2(arene)2(SEt)3]+ cations.  相似文献   

9.
The photoinduced synthesis and spectroscopic properties of the new mixed metal compound [Mn3Re(CO)12(SC6H5)4] by UV irradiation of a mixture of Mn2(CO)10, Re2(CO)10 with S2(C6H5)2 is described. No mixed sulphur/selenium compounds [M4(CO)12SnSe4?n(C6H5)4] (M = Mn or Re, n = 1–3) could be obtained by analogous photoreactions.  相似文献   

10.
The complex [Ag(DDM)2(CH3C6H4NH2)]NO3, where DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2], was synthesized and its structure was determined. The crystals are monoclinic, space group P21/n, a = 9.543(2) ?, b = 18.056(4) ?, c = 1.901(2) ?, β = 106.94(3)°, V = 1796.8(6) ?3, ρcalcd = 1.443 g/cm3, Z = 4. The Ag atom (at the inversion center) is coordinated at the vertices of an almost undistorted octahedron by six nitrogen atoms of the primary amino groups from four bridging DDM molecules and two terminal p-toluidine molecules (Ag-N, 2.546(3) ?; NAgN, 89.7–90.3°). Wavelike layers composed of conjugate multiunit metal rings, each containing four Ag+ ions and four bridging DDM ligands, are formed in the structure in the [101] direction (a 2D polymer). Uncoordinated NO 3 anions are arranged in the cavities between the layers and link them by N-H⋯O hydrogen bonds. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 12, pp. 1992–1998.  相似文献   

11.
The [Ni(DDM)2(NO3)2(H2O)2] complex (DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2]) is synthesized, and its structure is determined. The crystals are triclinic, space group P , a = 5.846(1) ?, b = 9.450(2) ?, c = 13.390(3) ?, α = 105.63(3)°, β = 98.13(3)°, γ = 105.84(3)°, V = 666.6(2) ?3, ρcalcd = 1.553 g/cm3, Z = 2. The Ni(II) ion (in the inversion center) is bound to a distorted octahedral array formed by the nitrogen atoms of the primary amino groups of the DDM molecules and the oxygen atoms of the monodentate nitrato groups and water molecules (Ni(1)-N(3) 2.119(2) ?, Ni(1)-O(1) 2.122(2) ?, Ni(1)-O(w) 2.047(2) ?, angles at the Ni atoms vary in the 85.08(9)°–94.92(9)° interval). The structure contains supramolecular metallacycles formed by the O(w)-H…N(2) hydrogen bonds between the coordinated H2O molecules and the terminal amino groups of DDM. The metallacycles are joined by the Ni2+ ions into infinite chains running in the [111] direction. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 11, pp. 1838–1843.  相似文献   

12.
The complexes cis-[M(Ph2PC6H4-2-S)2] M=Ni, Pd, Pt were stereoselectively synthesized by transmetallation reactions of [M(Cl)2(NCC6H5)2] M=Pd, Pt or NiCl2·6H2O with [Sn(R)2(Ph2PC6H4-2-S)2] R=Ph, nBu or tBu. The conformation of the Pd and Pt derivatives being unequivocally confirmed by single crystal X-ray diffraction studies showing both metal centers to be into a slightly distorted square planar environment, the main distortion being due to the steric hindrance caused by the aromatic rings in the phosphine moiety.  相似文献   

13.
The reactions of [Co(η-C5H5)(L)I2] with Na[S2CNR2] (R = alkyl or phenyl) give [Co(η-C5H5)(I)(S2CNR2)] (I) when L = CO and [Co(η-C5H5)(L)(S2CNR2)]I (II) when L is a tertiary phosphine, phosphite or stibine, or organo-isocyanide ligand. In similar reactions [Co(η-C5H5)(CO)(C3F7)I] gives [Co(η-C5H5)(C3F7)(S2CNMe2)] and [Mn(η-MeC5H4)(CO)2(NO)]PF6 forms [Mn(η-MeC5H4)(NO)(S2CNR2)]. The iodide ligands in I may be displaced by L, to give II, or by other ligands such as [CN]?, [NCS]?, H2O or pyridine whilst SnCl2 converts it to SnCl2I. The iodide counter-anion in II may be replaced by others to give [BPh4]?, [Co(CO)4]? or [NO3]? salts. However [CN]? acts differently and displaces (PhO)3P from [Co(η-C5H5){P(OPh)3}(S2CNMe)]I to give [Co(η-C5H5)(CN)(S2CNMe2)] which may be alkylated reversibly by MeI and irreversibly by MeSO3F to [Co(η-C5H5)(CNMe)(S2CNMe2)]+ salts. Conductivity measurements suggest that solutions of I in donor solvents are partially ionized with the formation of [Co(η-C5H5)(solvent)(S2CNR2)]+ I? species. The IR and 1H NMR spectra of the various complexes are reported. They are consistent with pseudo-octahedral “pianostool” molecular structures in which the bidentate dithiocarbamate ligands are coordinated to the metal atoms through both sulphur atoms.  相似文献   

14.
Single crystals of (H3O)[UO2(CH3COO)3] (I) and (NH(C2H5)3)[UO2(CH3COO)3] (II) are synthesized, and their structures are studied by X-ray crystallography. Compound I crystallizes in the tetragonal crystal system with the unit cell parameters a = 13.70640(10) ?, c = 27.5258(5) ?, V = 5171.14(11) ?3, space group I41/a, Z = 16, R = 0.0238. The crystals of compound II are orthorhombic with the parameters a = 13.3685(3) ?, b = 10.6990(3) ?, c = 12.2616(3) ?, V = 1753.77(8) ?3, space group Pna21, Z = 4, R = 0.0228. The uranium-containing structural units of crystals I and II are [UO2(CH3COO)3] island mononuclear groups belonging to the A B301(A = UO22+, B01 = CH3COO) crystal-chemical group of uranyl complexes. [UO2(CH3COO)3] complexes are linked into a three-dimensional framework by electrostatic interactions with the outer-sphere cations and by hydrogen bonds involving the hydrogen atoms of hydroxonium (I) or triethylammonium (II) with the oxygen atoms of the acetato groups.  相似文献   

15.
Methylpalladium(II) dithiolate complexes of the type [PdMe(SS)(ER3] (SS = S2 CNR2 (R = Me or Et), S2COEt, S2P(OR)2 (R = Et, nPr, iPr), S2PPh2; ER3 = PMePh2, PPh3, AsPh3) have been synthesized by the reaction of [Pd2Me2(μ-Cl)2(PMePh2)2] with sodium/potassium/ammonium salts of the dithio acid or by treatment of [PdMeCl(cod)] with ER3 followed by sodium/potassium/ammonium salts of the dithio ligand. All the complexes were characterized by elemental analysis, IR and nuclear magnetic resonance (1H, 31P) data.  相似文献   

16.
The complex dicarbonylbis(diphenylethylphosphine)platinum, Pt(CO)2[P(C6H5)2(C2H5)]2, crystallizes in either of the enantiomorphous space groups P3121 (No. 152) and P3221 (No. 154) with cell dimensions a = 10.64(1), c = 22.06(1) Å, U = 2163 Å3; pc = 1.564 g/cm3 for Z = 3, pm = 1.55(3) g/cm3. The intensities of 1177 independent reflections have been determined by counter methods with MoKα monochromatized radiation. The structure has been solved by the heavy atom method. The refinement, carried out by full-matrix least squares down to a final R factor of 0.042, has enabled the absolute configuration of the crystal sample (space group P3121) to be ascertained. The molecule is roughly tetrahedral, and has the metal atom lying on a two-fold axis of the cell. Bond parameters are: PtC = 1.92(2) Å, PtP = 2.360(4) Å, CPtC = 117(1)° and PPtP = 97.9(2)°. The PtC2 and PtP2 moieties make a dihedral angle of 86.0(3)°. The overall C2 symmetry of the molecule is probably only a statistically averaged situation, a disorder in the PtCO interactions being apparent from the orientations of the thermal ellipsoids of the C and O atoms.  相似文献   

17.
Reaction of lithiated bis(diphenylphosphino)amine, [(C6H5)2P]2N? Li+, with K2PtCl4 or PdCl2 (in the presence of trimethylphosphine) yields the homoleptic bis[bis(diphenylphosphino)amide] complexes I and II, respectively. With NiCl2/(CH3)3P the chloro-bridged dinuclear complex III is obtained. A symmetrical bonding of the Ph2P-·N-·PPh2 anion to the metal through the phosphorus atoms is indicated for these diamagnetic, deep-yellow (I, II) or red (III) complexes by 31P NMR spectroscopy (J(PtP) 1812 Hz for I). I and II are dissolved in CF3COOH with protonation at the nitrogen atoms to give bis(diphenylphosphino)amine complexes IV and V, respectively (J(PtP) 2080 Hz for IV). IV and V are 1:2 electrolytes in CH3NO2. Methylation of I-III with CH3OSO2F leads to the bis(diphenylphos-phino)methylamine complexes VI-VIII, of which the palladium compound VII has been structurally characterized by single crystal X-ray diffraction. VII contains a planar CNP2PdP2NC skeleton and is thus based on planar ligand arrays both at Pd and at the two N atoms.  相似文献   

18.
Qinyu Li  Xuan Xu   《Acta Physico》2007,23(12):1875-1880
In order to study the effects of R group on Fe–Hg interactions and 31P chemical shifts, the structures of mononuclear complexes Fe(CO)3(PPh2R)2 (R=pym:1, fur: 2, py: 3,thi: 4; pym=pyrimidine, fur=furyl, py=pyridine, thi=thiazole) and binuclear complexes [Fe(CO)3(PPh2R)2(HgCl2)] (R=pym: 5, fur: 6, py: 7, thi: 8) were studied using the density functional theory (DFT) PBE0 method. The 31P chemical shifts were calculated by PBE0-GIAO method. Nature bond orbital (NBO) analyses were also performed to explain the nature of the Fe–Hg interactions. The conclusions can be drawn as follows: (1) The complexes with nitrogen donor atoms are more stable than those with O or S atoms. The more N atoms there are, the higher is the stabilility of the complex. (2) The Fe–Hg interactions play a dominant role in the stabilities of the complexes. In 5 or 6, thereisa σ-bond between Fe and Hg atoms. However, in 7 and 8, the Fe–Hg interactions act as σP–FenHg and σC–FenHg delocalization. (3) Through Fe→Hg interactions, there is charge transfer from R groups towards the P, Fe, and Hg atoms, which increases the electron density on P nucleus in binuclear complexes. As a result, compared with their mononuclear complexes, the 31P chemical shifts in binuclear complexes show some reduction.  相似文献   

19.
We have synthesised four rhenium carbonyl complexes of general formula [ReX(CO)3(Me2E)2] (X  Cl, Br, I, E  S, Se), and studied their temperature variable NMR spectra. All complexes were formed as the fac isomer, with the exception of [ReI(CO)3(Me2Se)2], which was obtained as a mixture of mer and fac forms. In all of these fac complexes pyramidal inversion of sulphur or selenium atoms has been demonstrated, and energy barriers to inversion have been determined either by computer simulation of complete line shapes or by coalescence temperature methods. The value of ΔG for inversion in this class of complex has been found to be about 17 kJ mol?1 higher for selenium than for sulphur, and variation of the cis halogen made no pronounced effect.  相似文献   

20.
1-Allyl-4-aminopyridinium chloride reacts with Cu(NO3)2 · 3H2O in an ethanolic solution under the conditions of ac electrochemical synthesis at copper electrodes to form crystals of compound [(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2] (I). The crystals of compound I are monoclinic: space group P21/c, Z = 4, a = 25.770(7), b = 7.230(4), c = 12.505(5) ?, β = 92.58(3)°, V = 2328(2) ?3. The direct interaction of 1-allylquinolinium nitrate with Cu(NO3)2 · 3H2O in a methanolic solution in the presence of metallic copper yields crystals of compound [C9H7N(C3H5)Cu(NO3)2] (II). The crystals of compound II are triclinic: space group P , a = 6.756(3), b = 8.391(4), c = 12.489(5) ?, α = 77.18(3)°, β = 89.48(4)°, γ = 73.32(3)°, V = 662.0(5) ?3. The structure of compound I is built of infinite linear anions: polymeric fragments {(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2} n . Each of two copper atoms (Cu(1) and Cu(2)) π-coordinates the C=C bonds of the allyl groups of the 1-allyl-4-aminopyridinium cations, the oxygen atom of the nitrate ions, and two chlorine atoms. The third copper atom Cu(3) is linearly linked with two chlorine atoms. Particular polymeric fragments are additionally joined by the N-H…O, C-H…O, C-H…Cl hydrogen bonds. The crystal structure of compound II is built-up of the isolated L2Cu2(NO3)4 fragments (L is the 1-allylquinolinium cation). The metal atom is localized in the trigonal pyramidal coordination environment of three oxygen atoms of the nitrate ions and of the C=C bond of the allyl group of the cation. The particular L2Cu2(NO3)4 fragments are additionally joined by the C-H…O hydrogen bonds. Original Russian Text ? A.V. Pavlyuk, T. Lis, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 458–462.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号