首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sonoluminescence     
《应用光谱学评论》2013,48(3):399-436
Abstract

Sonoluminescence is the light emission phenomenon from collapsing bubbles in liquid irradiated by an ultrasonic wave. In the present review, theoretical and experimental studies of the two types of sonoluminescence [single‐bubble sonoluminescence (SBSL) and multibubble sonoluminescence (MBSL)] are described. SBSL is a sonoluminescence from a single stably pulsating bubble trapped at the pressure antinode of a standing ultrasonic wave. MBSL is a sonoluminescence occurring from many bubbles in liquid irradiated by an ultrasonic wave. The theoretical and experimental studies suggest that SBSL originates in emissions from plasma inside the heated bubble at the bubble collapse, whereas MBSL originates both in emissions from plasma and in chemiluminescence inside heated bubbles at the bubble collapse. Unsolved problems of sonoluminescence have also been explained in detail.  相似文献   

2.
钱祖文 《中国物理》2001,10(7):636-638
The transient resonance of a sonoluminescence bubble has been analysed. When the bubble performs its transient resonance at the nth order harmonics of the standing waves in the liquid, the light intensity strongly depends on the amplitude of the driving pressure (proportional to its 2n power, with n=fr/f, where fr is Minnaert's linear resonant frequency of the bubble and f is the frequency of driving sound). The kinetic energy of a vibrating bubble becomes maximum approximately when it is in its equilibrium size. For example, when the ambient temperature of a bubble decreases from 34℃ to 4℃, a huge increase of the light intensity emitted by it can be explained. A suggestion was made that, within the limits permitted by the phase diagrams, as high an increase in driving pressure as possible could enhance the light intensity of sonoluminescence up to four orders of magnitude.  相似文献   

3.
The efficiency of chemical reactions in the presence of ultrasound at reduced pressures has been monitored using the influence of dissolved oxygen (DO) content on a luminol solution undergoing multibubble sonoluminescence. From these measurements under the condition of constant ultrasonic frequency and constant amplitude of sound pressure, it is shown that the intensity of sonoluminescence is higher at subatmospheric ambient pressure than at atmospheric pressure under the same degree of saturation. Also, it is found that there is an appropriate content of DO to produce the highest intensity of the luminescence and its value varies with ambient pressure.  相似文献   

4.
The sonoluminescence from aqueous solutions containing various salts in the concentration range of 0 to 7 M has been examined using 3.5 ms pulses of 515 kHz ultrasound. In almost all cases the sonoluminescence intensity recorded increased with increasing salt level until a critical concentration (in the range of 1-2 M) was reached. At salt levels above the critical concentration the signal intensity decreased sharply with increasing salt concentration. It is not possible to satisfactorily account for the trends in terms of changes in solution viscosity, rate of bubble coalescence, water vapour pressure, air/water interfacial tension or ionic strength. However, a good correlation of the increase in the signal with the extent of gas solubilisation in the solutions with changing salt concentration was observed. Possible reasons for the signal increase with the addition of salts and the marked decrease at high salt concentrations are discussed.  相似文献   

5.
The action of high intensity cavitation on several liquid halocarbons (C(2)Cl(4) CCl(4), CHCl(3), C(2)H(2)Br(4)) and other organic solvents (acetone, benzene and their mixtures) was investigated by recording multibubble sonoluminescence UV-Vis spectra over the temperature range between 246 and 298 K. The temperature induced variation of some thermophysical properties of the solvents Favours the interpretations of their role in determining the salient characteristics of the recorded spectra. We observed that high volatility does not necessarily quench sonoluminescence emission and that argon flow plays a key role in the appearance of radical emission lines. While for each investigated substance the intensity of C*(2) emission lines was clearly correlated to temperature, a comparative test between different halocarbons did not show a clear correlation with vapour pressure. Following recently reported results which evidenced the formation of dynamically differentiated populations of emitting bubbles in sulphuric acid, we performed MBSL experiments in liquid mixtures of halocarbons and sulphuric acid to investigate the correlation between the production of emitting species and the halocarbon volatility.  相似文献   

6.
Ultrasonic irradiation of solutions containing volatile organometallic complexes results in intense emission from excited-state metal atoms. We have determined the effect of dissolved gases (Xe, Kr, Ar, Ne, He, CF4, C2F6, CO, N2) on the intensity of the sonoluminescence resulting from ultrasonic irradiation of silicone oil solutions of Cr(CO)6. This provides a well-defined, spectrally resolved probe of sonoluminescence with emission resulting from a single species, the chromium atom excited states. As predicted by the hot-spot, thermal mechanisms of sonoluminescence, the intensity of excited-state Cr emission decreases with increasing thermal conductivity of the noble gases. The intensity of sonoluminescence increases with increasing γ (i.e. Cp/Cv), which is also in accord with a thermal mechanism. Sonoluminescence is substantially diminished by the addition of even small amounts (≈ 1%) of CF4 or C2F6, even though they are capable of supporting electrical discharge. This is in agreement with a thermal mechanism, but is in direct conflict with electrical theories of sonoluminescence.  相似文献   

7.
The average pressure inside a sonoluminescing bubble in sulfuric acid has been determined by two independent techniques: (1) plasma diagnostics applied to Ar atom emission lines, and (2) light scattering measurements of bubble radius vs time. For dimly luminescing bubbles, both methods yield intracavity pressures approximately 1500 bar. Upon stronger acoustic driving of the bubble, the sonoluminescence intensity increases 10,000-fold, spectral lines are no longer resolved, and radius vs time measurements yield internal pressures > 3700 bar. Implications for a hot inner core are discussed.  相似文献   

8.
In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller–Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5–3.0 atm and decreased sharply with increasing frequency in the range 200–1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters.  相似文献   

9.
The sonoluminescence of liquid sulfur has been observed for temperatures of 120–180°C. The sonoluminescence intensity of the sulfur melt is 109 photons/s at 120°C. As the temperature increases, the luminescence intensity decreases nonmonotonically, a maximum is observed at 160–175°C, and cavitation and luminescence cease at 180°C. The dependence obtained correlates with the temperature dependence of the viscosity of the sulfur melt. The sonoluminescence spectrum obtained with a resolution of 10 nm for 130–150°C contains one band with λmax = 560 nm, the emitter of which is likely an (S+)* ion. When the melt is saturated with argon, the sonoluminescence intensity increases by an order of magnitude; in this case, the spectral band shape changes only slightly. The results confirm the “electric” theory of multibubble sonoluminescence. In the process of the sonolysis of the sulfur melt, biradical fragments are formed in cavitation bubbles consisting of sulfur molecules, which initially have the form of cyclooctasulfur S8. These fragments can enter into the melts and can be involved in various chemical reactions. This circumstance makes it possible to recommend ultrasonic activation for reactions of sulfurization of hydrocarbons.  相似文献   

10.
For sufficiently strong acoustic forcing in a standing wave field, subresonant size bubbles are predicted to be repelled from the pressure antinode. Single bubble sonoluminescence (SBSL) conditions in water do not allow the observation of this instability. This study investigates the possibility that increasing the viscosity of the host liquid can preferentially suppress shape instabilities of a bubble and allow SBSL experiments to be limited by the Bjerknes force instability.  相似文献   

11.
Sonoluminescence is a process by which light is emitted from collapsing ultrasound-driven gas bubbles in a liquid. Recent works on sonoluminescence have shown that many parameters of the dissolved gas, surrounding liquid and external conditions influences this phenomenon [10]. The light intensity and emitted light spectra depends mainly on the fluid and dissolved gases properties [9,13]. These features indicate the possibility of estimating the amount of dissolved chemical compounds in liquids. The use of sonoluminescence for aging properties diagnostic of insulation oils was proposed. This article presents the schematic of used measurement setup and points out the difficulties in the research resulted from subtleness of the process and no fully accepted sonoluminescence theory.  相似文献   

12.
Line emission in single-bubble sonoluminescence   总被引:8,自引:0,他引:8  
We report that single-bubble sonoluminescence (SBSL) at low light intensities produces emission bands similar to multibubble sonoluminescence (MBSL) for pure noble gas bubbles. A smooth crossover between SBSL and MBSL behavior can be induced by varying the acoustic pressure amplitude and thereby the intensity of the light emitted. The relative intensity of the band emission depends both on the molecular weight of the noble gas and the water temperature. Our results provide a connection between the mechanisms SBSL and MBSL and show that molecular emission plays a role in SBSL.  相似文献   

13.
周超  陈伟中  崔炜程 《物理学报》2013,62(8):87805-087805
在溶有稀有气体的稀土盐氯化铽水溶液中进行了单泡声致发光光谱的研究. 在固定驱动超声频率、不同驱动声压下, 观察到了一系列OH自由基从第一激发态A2+到基态X2Π 各振动能级跃迁所产生的谱线, 包括波长307 nm处的(0, 0)跃迁谱线, 335 nm处的(0, 1)跃迁谱线以及276 nm处的(1, 0) 跃迁谱线等. 实验结果表明较高的驱动声压有利于 276 nm处谱线的产生, 而较低的驱动声压则有利于 307 与 335 nm 处谱线的产生. 通过定义线状光谱与连续谱的光强比, 定量地表征了线状光谱在总光谱中的相对强度, 并给出了驱动声压对各跃迁谱线光强比的影响. 关键词: 单泡声致发光 驱动声压 线状光谱 光强比  相似文献   

14.
The violent collapse of inertial bubbles generates high temperature inside and emits strong impulsive pressure. Previous tests on sonoluminescence and cavitation erosion showed that the influence of liquid temperature on these two parameters is different. In this paper, we conducted a bubble dynamic analysis to explore the mechanism of the temperature effect and account for the above difference. The results show that the increase of vapor at higher liquid temperatures changes both the external compression pressure and the internal cushion and is responsible for the variation of bubble collapse intensity. The different trends of the collapsing temperature and emitted sound pressure are caused by the energy distribution during the bubble collapse. Moreover, a series of simulations are conducted to establish the distribution map of the optimum liquid temperature where the collapse intensity is maximized. The relationship between the collapse intensity and the radial dynamics of the bubble is discussed and the reliable indicator is identified. This study provides a clear picture of how the thermodynamic process changes cavitation aggressiveness and enriches the understanding of this complex thermal-hydrodynamic phenomenon.  相似文献   

15.
Temperature and pressure dependence of sonoluminescence   总被引:2,自引:0,他引:2  
The dependence of sonoluminescence on ambient pressure and temperature is measured. As water is cooled, there occurs a 100-fold increase in light emission which can be accompanied by only slight changes in the ambient radius of the pulsating bubble. This suggests that water vapor trapped in the collapsing bubble is a key parameter for this system. For fixed concentration of gases in water, the maximum intensity of sonoluminescence decreases as the ambient pressure is lowered below 1 atm.  相似文献   

16.
We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ~1600 to ~9000K. The effective pressure during MBSL is ~300bar, based on atomic line shifts. Given nanosecond emission times, this means that cooling rates are >10(12)K/s. In sulfuric and phosphoric acid, the low volatility and high solubility of any sonolysis products make bubble collapse more efficient and evidence for an optically opaque plasma core is found.  相似文献   

17.
Based on a quasi-adiabatic model,the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated.By using a complete form of the hydrodynamic force,a unique circular path for the m-SBSL in water is obtained.The effect of the ambient pressure variation on the bubble trajectory is also investigated.It is concluded that as the ambient pressure increases,the bubble moves along a circular path with a larger radius and all bubble parameters,such as gas pressure,interior temperature and light intensity,increase.A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide.With fluid viscosity increasing,the circular path changes into an elliptic form and the light intensity increases.  相似文献   

18.
The radial and translational oscillations of a single cavitation bubble in a standing ultrasound wave were investigated experimentally at various driving acoustic pressures for aqueous ethanol solutions with different bulk molar fractions of ethanol range of 0-1.3 × 10(-3). The results show that both the lower and upper stability thresholds of the acoustic driving pressure decreased as the concentration of ethanol was increased. At a given driving pressure the ambient and maximum bubble sizes increased with increasing ethanol concentration. In addition, as the ethanol was increased, the sonoluminescence intensity decreased while the bubble dynamics remained largely unchanged. The translational oscillation of the levitated bubble, however, became increasingly violent with increasing ethanol concentration. The displacement of the bubble reached 0.7 mm at the highest concentration studied (1.3 × 10(-3)) and the maximum bubble size was found to change as the bubble jumped up and down. This bubble translation may be responsible for the decrease of the acoustic driving pressure threshold and suggests that repetitive injection of ethanol molecules into the bubble takes place. These results may account for the different sensitivities of single bubble and multi-bubble sonoluminescence to the presence of volatile additives.  相似文献   

19.
A new approach is proposed for explaining the experimental data on sonoluminescence of acoustic and laser-induced cavitation bubbles. It is suggested that two different sonoluminescence mechanisms, namely, thermal and electric ones, are possible and that they manifest themselves depending on the bubble dynamics. An intense thermal luminescence occurs as a result of compression of an individual stationary spherical bubble; a weak electric luminescence accompanies the deformation and splitting of the bubble when thermal luminescence is suppressed (for example, in the case of multibubble sonoluminescence). It is shown that, when an individual bubble loses its spherical shape under the effect of different actions (change in the acoustic pressure, artificial deformation, translatory motion, etc.) or when a laser-induced bubble undergoes fragmentation, the sonoluminescence spectrum exhibits specific bands that are similar to the bands in the multibubble sonoluminescence spectrum. The appearance of these bands is attributed to the suppression of the thermal sonoluminescence mechanism and the manifestation of the electric mechanism. It is shown that the maximum temperature T max characterizing the compression of a laser-induced bubble is primarily determined by the temperature of the plasma at the instant of the laser-induced breakdown, whereas, for an acoustic bubble, T max is primarily determined by the acoustic and hydrostatic pressures and by the saturation vapor pressure of the liquid.  相似文献   

20.
《Ultrasonics》2013,53(1):29-35
The particles in a liquid decrease the ultrasonic intensity threshold required for cavitation onset. In this study, a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles (Au–PpIX) was used as a nucleation site for cavitation. The nonradiative relaxation time of Protoporphyrin IX in the presence of gold nanoparticles is longer than the similar time without gold nanoparticles. The acoustic cavitation activity was investigated via recording of the integrated sonoluminescence signal in the wavelength range of 220–700 nm in a gel phantom by a cooled charge coupled device (CCD) at different intensities of 1 MHz ultrasound. In order to confirm these results, a chemical dosimetric method was utilized, too. The recorded sonoluminescence signal in the gel phantom containing Au–PpIX was higher than the other phantoms. These records have been confirmed by the chemical dosimetric data. Therefore, we anticipate that a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles can act as an efficient sonoluminescence agent and could be introduced as a novel sonosensitizer for sonodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号