首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined.

Results

Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe.

Conclusion

In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification.  相似文献   

2.
Two compounds based on 2-amino-4,6-bis(4-pyridyl)-1,3,5-triazine (4-HABPT), [Co(4-HABPT)2(H2O)4](CH3COO)2 (1), and Zn(4-HABPT)2Cl2 (2) were obtained at room temperature. Single-crystal X-ray diffraction analyses indicate that 1 crystallizes in the triclinic P 1 with cobalt(II) coordinated by two 4-HABPT and four waters, two acetates are counter ions. The complex cations and acetates are linked to a 3-D framework by hydrogen bonds. Compound 2 crystallizes in the orthorhombic Pnc2 with zinc(II) coordinated by two 4-HABPT and two chlorides in a tetrahedral geometry; the complex also forms a 3-D framework by hydrogen bonds and π?···?π interactions.  相似文献   

3.
Some five-coordinated dimethyltin(IV) complexes of the type Me2SnL (where L is the anion of a bifunctional tridentate Schiff base) were synthesized. These Schiff bases are N-(3-hydroxypyridine-2-yl)-3-methoxysalicylideneimine, HOC6H3OCH3CH=NC5H3NOH (1), N-(3-hydroxypyridine-2-yl)-3-ethoxysalicylideneimine, HOC6H3OC2H5CH=NC5H3NOH (2), N-(3-hydroxypyridine-2-yl)-5-chlorosalicylideneimine, HOC6H3ClCH=NC5H3NOH (3), and N-(3-hydroxypyridine-2-yl)-3-methoxy-5-bromosalicylideneimine, HOC6H2OCH3BrCH=NC5H3NOH (4). Dimethyltin(IV) complex of 3 (3a) was characterized by single crystal X-ray diffraction method and a coordination geometry that is nearly halfway between trigonal–bipyramidal and square pyramidal arrangement was found. Dimethyltin complexes of (1), (2), and (4) were also prepared and characterized by the comparison of their elemental analysis and 1H-NMR-, IR-, UV- and mass spectral data with those of (3a). For example, in the 1H-NMR spectra, the 2J(119Sn-1H) in the Sn-CH3 moiety have values between 80 Hz and 90 Hz, typical of five-coordinated tin species. By using these values in Lockart’s Equations, H3C–Sn–CH3 angles in the complexes were estimated to lie between 130° and 145°. X-ray diffraction value for 3a, confirms this estimate within 3.4% relative deviation (129.7° exp. Vs. 134.9° estimate).  相似文献   

4.
The title complex, Ni(C8H8N2S2)(C4H4O5)(H2O)?·?3H2O, was synthesized and its crystal structure determined by X-ray diffraction methods. Two crystallographically independent complex molecules are present in the asymmetric unit. They have similar octahedral coordination geometries, formed by a bidentate dimethylbithiazole (dMbt), a tridentate oxydiacetate dianion (ODA) and a coordinated water molecule. The tridentate ODA ligand displays an unusual facial configuration. A partially overlapped arrangement of nearly parallel dMbt ligands of neighbouring molecules is observed in the crystal, the shortest centroid distance of 3.555(3)?Å between thiazole rings suggesting the existence of aromatic π–π stacking.  相似文献   

5.
The title complex, Ni(C8H8N2S2)(C4H4O5)(H2O)?·?3H2O, was synthesized and its crystal structure determined by X-ray diffraction methods. Two crystallographically independent complex molecules are present in the asymmetric unit. They have similar octahedral coordination geometries, formed by a bidentate dimethylbithiazole (dMbt), a tridentate oxydiacetate dianion (ODA) and a coordinated water molecule. The tridentate ODA ligand displays an unusual facial configuration. A partially overlapped arrangement of nearly parallel dMbt ligands of neighbouring molecules is observed in the crystal, the shortest centroid distance of 3.555(3)?Å between thiazole rings suggesting the existence of aromatic π–π stacking.  相似文献   

6.

Background  

Pyrimethamine [2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidine] is an antifolate drug used in anti-malarial chemotherapy. Pyrimidine and aminopyrimidine derivatives are biologically important compounds owing to their natural occurrence as components of nucleic acids.  相似文献   

7.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

8.
The title compound has been prepared and its crystal structure determined by X-ray diffraction methods. The complex salt consists of Mn(II) complex cations, benzoate anions and lattice water molecules. Mn(II) assumes a distorted octahedral geometry defined by two 1,10-phenanthroline (phen) ligands, a Cl? ion and a water molecule. A comparison of bond distances and bond angles suggests electrostatic interaction between Mn(II) and coordinated N atoms. The nitrobenzoate anion does not coordinate to the Mn atom but links with the complex cation via O?H···O hydrogen bonds. Aromatic stacking occurs between phen rings and between phen and benzoate.  相似文献   

9.
Two new supramolecular isomeric complexes [Mn(BBA)2(H2O)2] n · 4nH2O (1) and [Mn(BBA)2(H2O)2] · 4H2O (2) were obtained by hydrothermal reactions of MnCl2 · 4H2O with 3,5-bis(isonicotinamido)benzoic acid (HBBA) under different ratio of NaOH/HBBA. Complex 1 is a 1-D zigzag chain in which the Mn(II) is six-coordinate with distorted octahedral geometry. The 1-D chains are further connected by hydrogen bonds to give a 3-D supramolecular framework. Complex 2 is a monomeric molecular complex, assembled through intermolecular hydrogen bonds into a 3-D supramolecular network. Reaction conditions have remarkable influence on the structures of the complexes. The thermal and non-linear optical properties of the complexes were studied.  相似文献   

10.
Iodination of Ph2Te2Se by molecular iodine is directed towards the Te atom and yields {diiodo[(phenyltellanyl)selanyl]‐λ4‐tellanyl}benzene, PhTeSeTeI2Ph or C12H10I2SeTe2. The molecule can be considered as a chimera of PhTeSeR, PhTeSeTePh and R′TeI2Ph fragments. The crystal structure features a complex interplay of the supramolecular synthons Te…π(Ph), Se…Te and I…Te, combining molecules into a three‐dimensional framework. Their combination affords long‐range supramolecular synthons which are fused in a way resembling the mythological chimera and could be defined as chimeric supramolecular synthons. The energies of the intermolecular interactions have also been calculated and analyzed.  相似文献   

11.
Room temperature reactions of the ternary adducts of AgNO3, bipodal ligand [4,4′-bipyridine (4,4′-bpy) or trans-1,2-bis(4-pyridyl)ethylene (tbpe) or 1,2-bis(4-pyridyl)ethane (bpe)] and organic ligand [4-aminobenzoic acid (4-aba) or 4-hydroxybenzoic acid (4-hba) or terephthalate ion (tph)] afford new 3-D supramolecular coordination polymers (SCPs), namely, {[Ag(4,4′-bpy) · H2O](4-ab) · 2H2O} (1), {[Ag(tbpe)]0.5(4-hb) · 3H2O} (2), [Ag2(L)2 · (tph)] (L = 4,4′-bpy, tbpe) (3,4) and {[Ag2(bpe)2 · (tph)] · 2H2O} (5). The bipodal ligand coordinates to silver forming a 1-D cationic chain (A), while the organic ligand and solvent form a 1-D anionic chain (B) via hydrogen bonds. The chains construct layers which are connected via hydrogen bonds and π–π stacking forming a 3-D network structure. The presence of the carboxylate, amino and hydroxyl groups in the organic ligands significantly extend the dimensionality via hydrogen bonds. All the SCPs 1–5 exhibit strong luminescence.  相似文献   

12.
13.
14.
The interaction of silver triflate (OTf=SO3(CF3)) and dppf [(C5H4PPh2)2Fe)] gave different complexes, depending on the stoichiometric proportions and reaction conditions. Under limiting dppf conditions, three different forms (1-3) of [Ag2(OTf)2(dppf)]x were isolated. Single crystal X-ray diffraction analyses showed that the structure of 1 (x=2n) consists of a 2-D polymer comprising a tetra-silver basic unit, while that of 2 (x=2) possesses a discrete tetra-silver framework and that of 3 (x=n) is a linear polymer based on a di-silver repeating unit. The structures are supported by bridging dppf ligands and triflate groups. The crystal lattices of the compounds are stabilized by extensive intermolecular C-H?X hydrogen bonding (H=ring proton of Cp or Ph of dppf; X=O or F of OTf). [Ag(dppf)(OTf)] (4) and the structurally characterized mononuclear [Ag(dppf)2](OTf) (5) were the sole products obtained from treatment of AgOTf with dppf in molar ratios of 1:1 and 1:2, respectively.  相似文献   

15.
The synthesis and physical properties of bis(2-(1H-imidazol-2-yl)-pyridine)copper(II) with chloride, nitrate and perchlorate as counteranions have been described. Microanalysis, magnetic susceptibility, conductivity and various spectroscopic measurements have been used for the characterization of the complexes. The crystal structures of all three complexes have been determined. Intermolecular hydrogen-bonding interactions and the resulting self-assembly patterns for each of the species have been scrutinized. The chloride containing complex crystallizes as a trihydrate, where the metal ion is in a tetragonally elongated cis-N4Cl2 coordination sphere. This complex provides a three-dimensional honeycomb-like structure through N–H?Cl, O–H?Cl and O–H?O hydrogen bonds. In the nitrate containing species, one of the two counteranions coordinates to the metal centre to provide an irregular N4O2 coordination sphere, while the other counteranion, with the help of a lattice water molecule, assembles a ladder-like structure via N–H?O and bifurcated O–H?O,O hydrogen bonds. A one-dimensional polymeric species has been formed when perchlorate is the counteranion. Here one of the two perchlorates acts as a bridge between the metal centres that are in tetragonally elongated trans-N4O2 coordination spheres. This polymeric chain, together with the second perchlorate and a water molecule, form a ribbon-like structure due to N–H?O and O–H?O hydrogen bonds.  相似文献   

16.
A mixed-ligand Zn(II) complex formulated as [Zn(aldtc)2(bipy)] (aldtc=diallyldithiocarbamate; bipy=2,2′-bipyridine) was synthesized and characterized by IR, 1H and 13C NMR spectral measurements and X-ray crystallography. The crystal structure of this complex indicates that Zn has a distorted octahedral geometry. The Zn—N distances are invariant (2.168(2) Å), while those of the Zn—S are slightly different (2.5408(9) and 2.5440(9) Å). The N—Zn—N, S—Zn—S and N—Zn—S bond angles are in the range 75.35(13)–99.75(7)°, 70.48(3)–161.02(5)° and 95.26(7)–160.32(7)°, respectively. The crystal packing of the complex shows different motifs of supramolecularity resulting from both hydrophilic ((π)C—H···S) and hydrophobic ((allyl)C—H···C(π)) intermolecular interactions. These interactions result in a chain arrangement of molecules along crystallographic c axis and the chains are further connected via π···π stacking along with ((π)C—H···S along b axis leading to an overall crystal packing that can be regarded as layers of complexes along bc plane, which are held together through nonconventional hydrogen bonding and π···π stacking.  相似文献   

17.
18.
The reaction of phenylmercury(II) acetate and cadmium(II) acetate with a refluxed solution of diacetylmonoxime and morpholine N-thiohydrazide formed a novel phenylmercury(II) complex, [PhHg(Hdammthiol)] (1) and a cadmium(II) complex, [Cd(Hdammthiol)2] (2), respectively (where H2dammthiol is the thiol form of diacetylmonoximemorpholine N-thiohydrazone (Hdammth) formed by the condensation of diacetylmonoxime and morpholine N-thiohydrazide in the presence of phenylmercury(II) and cadmium(II) ions). The complexes were characterised by elemental analyses and spectral data (electronic, infrared and 1H NMR) and also by X-ray crystal structure analysis. The X-ray crystallography shows that the phenylmercury(II) complex attained a tricoordinated distorted T-shaped structure, while the cadmium(II) complex attained a trapezoidal bipyramidal geometry. The phenylmercury(II) complex forms a two-dimensional sheet via C–H?O and O–H?N hydrogen bonding and also forms a two-dimensional supramolecular dimer, having C–H?π synthons. Intermolecular C–H?O and O–H?O hydrogen bonding of the cadmium(II) complex forms a two-dimensional supramolecular sheet along the bc plane and posses an impressively short intermolecular C(sp3)?O(sp3) contact.  相似文献   

19.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

20.
NiLCIl2 (L?=?bis-(2-amino-1-methyliminobenzene)1,2-ethane) crystallizes in space group P-1 with a?=?9.042(2), b?=?10.263(10), c?=?11.045(2) Å, α?=?94.76(10), β?=?108.30(10), γ?= 109.86(10)°, Z?=?2, and represents a precursor of a tetradentate azamacrocyclic complex. The structure is stabilized by a system of intramolecular and intermolecular H-bonding involving chloride ions and nitrogen atoms. The coordination geometry about nickel(II) is slightly distorted octahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号