首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of several Cr(III) complexes of the constrained macrocyclic ligand 1,11-C3-cyclam (1,4,8,11-tetraazabicyclo[9.3.3]heptadecane) is reported. Only trans complexes are formed, and the structure of trans-[Cr(1,11-C3-cyclam)Cl2]PF6 is presented. The chemical and photophysical behavior of the 1,11-C3-cyclam complexes are compared with those of the corresponding cyclam (1,4,8,11 tetraazacyclotetradecane) and 1,4-C2-cyclam (1,4,8,11-tetraazabicyclo[10.2.2]hexadecane) complexes. The aquation rate of trans-[Cr(1,11-C3-cyclam)Cl2]+ is similar to that of the corresponding 1,4-C2-cyclam complex and is more than 5 orders of magnitude faster than the cyclam counterpart. A monotonic increase in the extinction coefficient is observed on going from the cyclam complexes to the 1,11-C3-cyclam complexes to the 1,4-C2-cyclam complexes, and this is related to the degree of centrosymmetry in each complex. The trans-[Cr(1,11-C3-cyclam)(CN)2]+ complex is a weak emitter in aqueous solution with a room-temperature emission maximum at 724 nm (tau=23 micros). Like the corresponding 1,4-C2-cyclam complex (tau=0.24 micros), the 1,11-C3-cyclam complex shows no deuterium-isotope effect in room-temperature solution. This is in marked contrast to the corresponding cyclam complex which has an emission lifetime of 335 micros and a significant deuterium isotope effect in room-temperature solution. Low temperature (77K) data are also presented in an attempt to understand the differences in photophysical behavior.  相似文献   

2.
Macrocyclic complexes of the type trans-[Cr(N4)(CN)2]+, where N4 = cyclam, 1,11-C3-cyclam, and 1,4-C2-cyclam demonstrate significant variation in their room-temperature excited-state behavior; namely, the lifetimes of the 2Eg (Oh) excited states are 335, 23, and 0.24 micros, respectively. The lifetimes of these complexes have been measured in acidified H2O/dimethyl sulfoxide over the temperature range between -30 and +95 degrees C. Arrhenius activation parameters were calculated from these data. There was very little variation in the values of the Arrhenius preexponential factor between these three complexes, whereas the value of Ea is 40.6 kJ/mol for the cyclam complex, 35.5 kJ/mol for the 1,11-C3-cyclam complex, and 22.3 kJ/mol for the 1,4-C2-cyclam complex. Thus, differences in the room-temperature excited-state lifetimes can be rationalized based on the competition between thermally independent nonradiative relaxation and a thermally activated channel. To test whether a photodissociation mechanism involving Cr-macrocyclic N bond cleavage is a plausible explanation for the thermally activated relaxation pathway, samples of the cyclam complex were photolyzed in acidified D(2)O. A marked increase in the lifetime after photolysis demonstrated the occurrence of photodeuteration and thus a likely photodissociation of a macrocyclic N.  相似文献   

3.
Arylethynylchromium(III) complexes of the form trans-[Cr(cyclam)(CCC(6)H(4)R)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane, R = H, CH(3), or CF(3) in the para position, and OTf = trifluoromethanesulfonate) have been prepared and characterized by IR spectroscopy and X-ray diffraction. The complexes are emissive with excited-state lifetimes in a deoxygenated fluid solution between 200 and 300 micros.  相似文献   

4.
The reaction of [Mn(CN)L'(NO)(eta(5)-C(5)R(4)Me)] with cis- or trans-[MnBrL(CO)(2)(dppm)], in the presence of Tl[PF(6)], gives homobinuclear cyanomanganese(i) complexes cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), linkage isomers of which, cis- or trans-[(dppm)(CO)(2)LMn(micro-CN)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), are synthesised by reacting cis- or trans-[Mn(CN)L(CO)(2)(dppm)] with [MnIL'(NO)(eta(5)-C(5)R(4)Me)] in the presence of Tl[PF(6)]. X-Ray structural studies on the isomers trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-NC)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) and trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-CN)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) show nearly identical molecular structures whereas cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) and cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) differ, effectively in the N- and C-coordination respectively of two different optical isomers of the pseudo-tetrahedral units (NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) and (CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) to the octahedral manganese centre. Electrochemical and spectroscopic studies on [(dppm)(CO)(2)LMn(micro-XY)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) show that systematic variation of the ligands L and L', of the cyclopentadienyl ring substituents R, and of the micro-CN orientation (XY = CN or NC) allows control of the order of oxidation of the two metal centres and hence the direction and energy of metal-metal charge-transfer (MMCT) through the cyanide bridge in the mixed-valence dications. Chemical one-electron oxidation of cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) with [NO][PF(6)] gives the mixed-valence dications trans-[(dppm)(CO)(2)LMn(II)(micro-NC)Mn(I)L'(NO)(eta(5)-C(5)R(4)Me)](2+) which show solvatochromic absorptions in the electronic spectrum, assigned to optically induced Mn(I)-to-Mn(II) electron transfer via the cyanide bridge.  相似文献   

5.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

6.
New ligands H(2)L2-H(2)L6 comprise the cyclen macrocycle which is N,N'-dialkylated at the 1,7-nitrogen atoms by three- and four-carbon alkyl chains bearing terminal sulfonic (C(3) H(2)L2), phosphonic (C(3) H(2)L3, C(4) H(2)L4) or carboxylic acid (C(3) H(2)L5, C(4) H(2)L6) groups, and HL7 is N-monoalkylated by a four-carbon sulfonic acid group. The ligands were prepared by alkylation of a bridged bisaminal intermediate. The syntheses of cobalt(III) complexes containing a tetradentate cyclen, N,N'-1,7-Me(2)cyclen, cyclam or L2-L7 ligand together with the bidentate 8-quinolinato (8QO(-)) ligand, of interest as it is a model for a more potent cytotoxic analogue, were investigated. Coordination of ligands (L) cyclen, N,N'-1,7-Me(2)cyclen or cyclam to cobalt(III) was achieved using Na(3)[Co(NO(6))] to form [Co(L)(NO(2))(2)](+). HOTf (trifluoromethansulfonic acid) was used to prepare the triflato complexes [Co(L)(OTf)(2)](+), followed by substitution of the labile triflato ligands to yield [Co(L)(8QO)](ClO(4))(2) isolated as the perchlorate salts. One further example containing cyclam and the 5-hydroxymethyl-8-quinolinato ligand was also prepared by this method. Complexes containing the pendant arm ligands L2-L6 were prepared from the cobalt precursor trans-[Co(py)(4)Cl(2)](+). Reaction of this complex with H(2)L2·4HCl and 8QOH produced [Co(L2)(8QO)] in one step and contains two deprotonated sulfonato pendant arms. The reaction of H(2)L3·4HBr with [Co(py)(4)Cl(2)](+) gave [Co(L3)]Cl in which L3 acts as a hexadenate ligand with the three-carbon phosphonato side chains coordinated to cobalt. H(2)L5·4HCl bearing three-carbon carboxylic acid pendant arms gave a similar result. The four-carbon ligands were coordinated to cobalt by reaction of [Co(py)(4)Cl(2)](+) with H(2)L4·4HBr or H(2)L6·4HCl to give [Co(HL4)Cl(2)] or [Co(H(2)L6)Cl(2)]Cl, which in turn with 8QOH gave the 8QO(-) complexes [Co(L4)(8QO)] bearing anionic phosphate pendant arms or [Co(H(2)L6)(8QO)]Cl(2) containing neutral carboxylic acid side chains. The reaction of Na(3)[Co(CO(3))(3)] with the mono-N-alkylated ligand HL7·4HCl and then HOTf gave [Co(L7)(CO(3))] and then in turn [Co(L7)(OTf)(2)]. The carbonato complex [Co(L7)(CO(3))] with [8QO](2)[SO(4)] produced [Co(L7)(CO(3))]. All complexes containing L7 bear an anionic sulfonato group on the side chain. The synthesis and characterisation of the six new ligands based on N-alkylated cylen ligand and the cobalt complexes outlined above are described, along with cyclic voltammograms of the 8QO(-) complexes and the molecular structures determined by X-ray crystallography of [Co(cyclen)(H(2)O)(2)](OTf)(3) (formed by aquation of the triflato complex), [Co(cyclen)(8QO)](ClO(4))(2), Co(L2)(8QO)·2H(2)O, Co(L4)(8QO)·6H(2)O and [Co(H(2)L6)Cl(2)]Cl·H(2)O. These demonstrate the coordination of the cyclen ligand in the folded anti-O,syn-N configuration with the N-alkylated nitrogens occupying apical positions.  相似文献   

7.
The reaction of [Cr(CN)6]3- with a mixture of trans-[Cr(cyclam)(OH)2]Cl, [Cr(cyclam)(OH)Cl]Cl and [Cr(cyclam)Cl2]Cl affords the cyanide bridged dimer, trans-[HO-Cr(cyclam)-NC-Cr(CN)5]-. The tetraphenylphosphonium salt of the anion crystallizes in space group P2(1)/n and shows a bent arrangement of the Cr1-CN-Cr2 unit with the Cr1-CN bond angle at 166.9 degrees and CN-Cr2 at 160.32 degrees . The Cr2-O bond, trans to the hexacyanide fragment, is very short at 1.902 A. Two dimers are held together by two hydrogen bonds connecting the Cr2-OH group of each dimer with one of the NH groups of the cyclam ligand of an adjacent molecule, leading to an almost linear configuration. These dimers of dimers get packed parallel to each other, generating layers separated by the tetraphenylphosphonium cations. Four of the cyanide groups of the anion are engaged in H-bonds with the four water molecules present in the structure or with a NH group of the macrocycle of an adjacent molecule. From magnetic susceptibility measurements, the dimer was found to exhibit antiferromagnetic interaction between the Cr(III) centers with J=-16 cm(-1)(H=-2JS(A)S(B)). Structural and magnetic parameters have been calculated by density functional theoretical methods at the B3LYP level. The exchange coupling constant, J, calculated for the dimer at the X-ray geometry is -23.2 cm(-1) which is in excellent agreement with the experimental value.  相似文献   

8.
Acyclic pyrazine-2-carboxamide and thioether containing hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpzctb), in its deprotonated form, has afforded light brown [Ni(II)(bpzctb)](1)(S=1) and green [Cu(II)(bpzctb)](2)(S=1/2) complexes. The crystal structures of 1.CH(3)OH and 2.CH(2)Cl(2) revealed that in these complexes the ligand coordinates in a hexadentate mode, affording examples of distorted octahedral M(II)N(2)(pyrazine)N'(2)(amide)S(2)(thioether) coordination. Each complex exhibits in CH(2)Cl(2) a reversible to quasireversible cyclic voltammetric response, corresponding to the Ni(III)/Ni(II)(1) and Cu(II)/Cu(I)(2) redox process. The E(1/2) values reveal that the complexes of bpzctb(2-) are uniformly more anodic by approximately 0.2 V than those of the corresponding complexes with the analogous pyridine ligand, 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpctb), attesting that compared to pyridine, pyrazine is a better stabilizer of the Ni(ii) or Cu(i) state. Coulometric oxidation of the previously reported complex [Ni(II)(bpctb)] and 1 generates [Ni(III)(bpctb)](+) and [Ni(III)(bpzctb)](+) species, which exhibit a LMCT transition in the 470--480 nm region and axial EPR spectra corresponding to a tetragonally elongated octahedral geometry. Complex 2 exhibits EPR spectra characteristic of the d(z(2)) ground state.  相似文献   

9.
The reactions between trans-[Os(IV)(tpy)(Cl)(2)(NCN)] (1) and PPh(3) and between trans-[Os(IV)(tpy)(Cl)(2)(NPPh(3))](+) (2) and CN(-) provide new examples of double derivatization of the nitrido ligand in an Os(VI)-nitrido complex (Os(VI)N). The nitrilic N-bound product from the first reaction, trans-[Os(II)(tpy)(Cl)(2)(NCNPPh(3))] (3), is the coordination isomer of the first iminic N-bound product from the second reaction, trans-[Os(II)(tpy)(Cl)(2)(N(CN)(PPh(3)))] (4). In CH(3)CN at 45 degrees C, 4 undergoes isomerrization to 3 followed by solvolysis and release of (N-cyano)iminophosphorane, NCNPPh(3). These reactions demonstrate new double derivatization reactions of the nitrido ligand in Os(VI)N with its implied synthetic utility.  相似文献   

10.
Derosa F  Bu X  Ford PC 《Inorganic chemistry》2005,44(12):4157-4165
Several new dinitritochromium(III) complexes of the type trans-[Cr(L)(ONO)(2)]BF(4), where L is a derivative of the macrocyclic ligand cyclam having pendant aromatic chromophores attached (L = 5,7-dimethyl-6-(substituted)-1,4,8,11-tetraazacyclotetradecane), have been prepared and characterized. Photoexcitation of aqueous solutions containing these complexes at wavelengths corresponding to the pendant chromophore absorption bands led to the generation of NO as detected by an electrochemical sensor. Photophysical data show that the expected fluorescence of the pendant chromophores is largely quenched when the macrocyclic ligand is coordinated to these Cr(III) centers, and this is interpreted in terms of fast energy transfer processes from the ligand-centered pipi states to the Cr(III)-centered ligand field states leading to subsequent cleavage of the Cr(III)-coordinated nitrito ligand. Thus, the chromophores tethered to the coordinated cyclam serve as light-gathering antennae for the intramolecular sensitization of the NO-generating photoreactions at the metal center.  相似文献   

11.
The reaction of the ynediamine 1,2-dipiperidinoacetylene (1) with [(η(2)-COE)Cr(CO)(5)], [(THF)W(CO)(5)] and [RuCl(2)(η(6)-cymene)](2) afforded homobimetallic complexes 2a, 2b and 3, in which the diaminoacetylene 1 acts as a bis(aminocarbene) ligand by bridging two complex fragments Cr(CO)(5) (in 2a), W(CO)(5) (in 2b) and RuCl(2)(η(6)-cymene) (in 3). The reaction of 1 with [RuCl(2)(PPh(3))(3)] gave trans-[(1)RuCl(PPh(3))(2)]Cl, [4]Cl, in which the alkyne 1 coordinates as a 4-electron donor ligand. The cation 4 represents a rare example of a square-planar Ru(II) complex with a low-spin ground state (S = 0), and its stability can be ascribed to the strong alkyne-metal π-interaction as confirmed by DFT calculations. Treatment with one or two equivalents of NaBPh(4) in acetonitrile gave [4]BPh(4) and the dicationic [(1)Ru(PPh(3))(2)(CH(3)CN)(2)](BPh(4))(2), [5](BPh(4))(2). [4]Cl can be used for the preparation of heterobimetallic Ru-Pd bis(aminocarbene) complexes by reaction with [(MeCN)(2)PdCl(2)], resulting in the formation of bimetallic 6 and tetrametallic 7.  相似文献   

12.
The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 ?, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.  相似文献   

13.
Alkynyl complexes of the type [M(cyclam)(CCR)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Rh(III) or Cr(III); and R = phenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 1-naphthalenyl, 9-phenanthrenyl, and cyclohexyl) were prepared in 49% to 93% yield using a one-pot synthesis involving the addition of 2 equiv of RCCH and 4 equiv of BuLi to the appropriate [M(cyclam)(OTf)(2)]OTf complex in THF. The cis and trans isomers of the alkynyl complexes were separated using solubility differences, and the stereochemistry was characterized using infrared spectroscopy of the CH(2) rocking and NH bending region. All of the trans-[M(cyclam)(CCR)(2)]OTf complexes exhibit strong Raman bands between 2071 and 2109 cm(-1), ascribed to ν(s)(C≡C). The stretching frequencies for the Cr(III) complexes are 21-28 cm(-1) lower than for the analogous Rh(III) complexes, a result that can be interpreted in terms of the alkynyl ligands acting as π-donors. UV-vis spectra of the Cr(III) and Rh(III) complexes are dominated by strong charge transfer (CT) transitions. In the case of the Rh(III) complexes, these CT transitions obscure the metal centered (MC) transitions, but in the case of the Cr(III) complexes the MC transitions are unobscured and appear between 320 and 500 nm, with extinction coefficients (170-700 L mol(-1) cm(-1)) indicative of intensity stealing from the proximal CT bands. The Cr(III) complexes show long-lived (240-327 μs), structureless, MC emission centered between 731 and 748 nm in degassed room temperature aqueous solution. Emission characteristics are also consistent with the arylalkynyl ligands acting as π-donors. The Rh(III) complexes also display long-lived (4-21 μs), structureless, metal centered emission centered between 524 and 548 nm in degassed room temperature solution (CH(3)CN).  相似文献   

14.
The complex trans-[HFe(PNP)(dmpm)(CH(3)CN)]BPh(4), 3, (where PNP is Et(2)PCH(2)N(CH(3))CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) can be successively protonated in two steps using increasingly strong acids. Protonation with 1 equiv of p-cyanoanilinium tetrafluoroborate in acetone-d(6) at -80 degrees C results in ligand protonation and the formation of endo (4a) and exo (4b) isomers of trans-[HFe(PNHP)(dmpm)(CH(3)CN)](BPh(4))(2). The endo isomer undergoes rapid intramolecular proton/hydride exchange with an activation barrier of 12 kcal/mol. The exo isomer does not exchange. Studies of the reaction of 3 with a weaker acid (anisidinium tetrafluoroborate) in acetonitrile indicate that a rapid intermolecular proton exchange interconverts isomers 4a and 4b, and a pK(a) value of 12 was determined for these two isomers. Protonation of 3 with 2 equiv of triflic acid results in the protonation of both the PNP ligand and the metal hydride to form the dihydrogen complex [(H(2))Fe(PNHP)(dmpm)(CH(3)CN)](3+), 11. Studies of related complexes [HFe(PNP)(dmpm)(CO)](+) (12) and [HFe(depp)(dmpm)(CH(3)CN)](+) (10) (where depp is bis(diethylphosphino)propane) confirm the important roles of the pendant base and the ligand trans to the hydride ligand in the rapid intra- and intermolecular hydride/proton exchange reactions observed for 4. Features required for an effective proton relay and their potential relevance to the iron-only hydrogenase enzymes are discussed.  相似文献   

15.
We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.  相似文献   

16.
Inamo M  Eba K  Nakano K  Itoh N  Hoshino M 《Inorganic chemistry》2003,42(19):6095-6105
A nanosecond laser photolysis study was carried out for the Cr(III) porphyrin complexes of 2,3,7,8,12,13,17,18-octaethylporphyrin, [Cr(OEP)(Cl)(L)], and of 5,10,15,20-tetramesitylporphyrin, [Cr(TMP)(Cl)(L)], in toluene containing water and an excess amount of L (L = axial ligand). The laser photolysis generates the triplet excited state of the parent complex as well as a five-coordinate complex, [Cr(porphyrin)(Cl)], produced by the photodissociation of the axial ligand L. The yields for the formation of the triplet state and the photodissociation of L are found to markedly depend on the nature of both L and porphyrin ligand. The five-coordinate [Cr(porphyrin)(Cl)] readily reacts with both H(2)O and L in the bulk solution to give [Cr(porphyrin)(Cl)(H(2)O)] and [Cr(porphyrin)(Cl)(L)], respectively. The axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] is then substituted by the ligand L to regenerate the original complex [Cr(porphyrin)(Cl)(L)]. In principle, the substitution reaction takes place by the dissociative mechanism: the first step is the dissociation of H(2)O from [Cr(porphyrin)(Cl)(H(2)O)], followed by the reaction of the five-coordinate [Cr(porphyrin)(Cl)] with the ligand L to regenerate [Cr(porphyrin)(Cl)(L)]. The rate constants for this ligand substitution reaction are found to exhibit bell-shaped ligand concentration dependence. The detailed kinetic analysis revealed that both ligands L and H(2)O in toluene make a hydrogen bond with the axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] to yield dead-end complexes for the substitution reaction. The reaction mechanisms are discussed on the basis of the substituent effects of the porphyrin peripheral groups and the kinetic parameters determined from the temperature dependence of the rate constants.  相似文献   

17.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

18.
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))PdCl(2)] (12) and [trans-(kappa(2)-(Mes)CN(H)C(Mes))PdCl(2)] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C(s) symmetry and for 13 rotation of the mesityl groups is prevented. In the related C(1) complex [(kappa(3)-(tBu)CN(H)C(tBu))PdCl][Cl] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12-14 and two equivalents of AgBF(4) in acetonitrile gives the analogous complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))Pd(MeCN)(2)][BF(4)](2) (15), [trans-(kappa(2)-(Mes)CN(H)C(Mes))Pd(MeCN)(2)][BF(4)](2) (16) and [(kappa(3)-(tBu)CN(H)C(tBu))Pd(MeCN)][BF(4)](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors (tBu)C(H)N(Bn)C(H)(tBu)][Cl](2) (2) and [(tBu)C(H)N(H)C(H)(tBu)][BPh(4)](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.  相似文献   

19.
Reactions of Re(V), tetradentate Schiff base complexes with tertiary phosphines have previously yielded both rearranged Re(V) and reduced Re(III) complexes. To further understand this chemistry, the rigid diiminediphenol (N(2)O(2)) Schiff base ligand sal(2)phen (N,N'-o-phenylenebis(salicylaldimine)) was reacted with (n-Bu(4)N)[ReOCl(4)] to yield trans-[ReOCl(sal(2)phen)] (1). On reaction with triphenylphosphine (PPh(3)), a rearranged Re(V) product cis-[ReO(PPh(3))(sal(2)phen*)]PF(6) (2), in which one of the imines was reduced to an amine during the reaction, and the reduced Re(III) products trans-[ReCl(PPh(3))(sal(2)phen)] (4) and trans-[Re(PPh(3))(2)(sal(2)phen)](+) (5) were isolated. Reaction of sal(2)phen with [ReCl(3)(PPh(3))(2)(CH(3)CN)] resulted in the isolation of [ReCl(2)(PPh(3))(2)(salphen)] (3). The compounds were characterized using standard spectroscopic methods, elemental analyses and single crystal X-ray crystallography.  相似文献   

20.
Novel dinuclear rhodium complexes of the general composition [Rh2Cl2(mu-CRR')2(mu-SbiPr3)] (4-6) were prepared by thermolysis of the mononuclear precursors trans-[RhCl(=CRR')(SbiPr3)2] in excellent yield. The X-ray crystal structure analysis of 4 (R = R' = Ph) confirms the symmetrical bridging position of the stibane ligand. Related compounds [Rh2Cl2(mu-CPh2)(mu-CRR')(mu-SbiPr3)] (7, 8) with two different carbene units were obtained either from trans-[RhCl(=CPh2)(SbiPr3)2] (1) and RR'CN2 or by a conproportionation of 4 and 5 (R = R' = p-Tol) or 4 and 6 (R= Ph, R' = p-Tol), respectively. While CO reacts with 4 to give the polymeric product [[RhCl(CPh2)(CO)]n] (9), tert-butyl isocyanide replaces the bridging stibane and yields [Rh2Cl2(mu-CPh2)2(mu-CNtBu)] (10). The reaction of 4 with tertiary phosphanes PR3 leads to complete bridge cleavage and affords the mononuclear compounds trans-[RhCl(=CPh2)(PR3)2] (11-15). In contrast, treatment of 4 with SbMe3 and SbEt3 yields the related triply bridged complexes [Rh2Cl2(mu-CPh2)2(mu-SbR3)] (16, 17) by substitution of SbiPr3 for the smaller stibanes. The displacement of the chloro ligands in 4-6 and 10 by n5-cyclopentadienyl gives the dinuclear complexes [(n5-C5H5)2Rh2(mu-CRR')2] (18-20) and [(n5-C5H5)2Rh2(mu-CPh2)2(mu-CNtBu)] (21), of which 18 (R = R' = Ph) was characterized crystallographically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号