共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang L Ai Z Jia F Liu L Hu X Yu JC 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(15):4185-4190
Various nanostructured films of copper and silver tellurides were hydrothermally grown on the corresponding metal substrates through reactions between metal foils and tellurium powder in different media. Interesting morphologies including nanowires, nanorods, nanobelts, nanosheets, and hierarchical dendrites were obtained. The nanostructured films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). A growth mechanism was proposed based on the characterization results. This study provides a low-temperature, solution-phase approach to grow low-dimensional, nanostructured metal tellurides with controllable morphologies. 相似文献
2.
《Electrochemistry communications》2002,4(8):610-612
Direct templating of materials via lyotropic liquid crystalline mesophases of non-ionic surfactants provides an elegant and highly versatile route to the production of a wide range of nanostructured materials with well-defined mesoporous architectures of extended spatial periodicities. This technique has now been applied in the electrochemical synthesis of adherent nanostructured tellurium films. This represents an important step towards the synthesis of II–IV semiconductor compounds such as cadmium telluride. Low angle X-ray scattering and transmission electron microscopy (TEM) studies of the resulting tellurium films indicate the presence of a system of uniform cylindrical pores organized in an hexagonal array. 相似文献
3.
Somarajan S Hasan SA Adkins CT Harth E Dickerson JH 《The journal of physical chemistry. B》2008,112(1):23-28
The controlled electrophoretic deposition of polystyrene/divinylbenzene (PS/DVB) star polymer films from a colloidal suspension is reported. Liquid suspensions, containing the PS/DVB star polymer, were prepared by injecting a dichloromethane (DCM) solution of the star polymer into a stratified liquid combination of hexane and DCM. A variety of hexane/DCM volume ratios were examined to identify the optimal solution conditions for electrophoretic deposition; thin films were produced from both unmixed and well-mixed hexane/DCM suspensions. Unmixed suspensions yielded spatially separated thin films, deposited in a controlled fashion, that were dependent on the polarity of the corresponding electrode. Films on the positive electrode differed in thickness, microstructure, and appearance from those formed on the negative electrode. In contrast, films produced from well-mixed hexane/DCM suspensions deposited uniformly across only the negative electrode. Atomic force microscopy studies revealed nanostructured surface morphologies that were unique to each of these films. Additionally, these microscopy studies shed light on the possible conformations of star polymers adsorbed on a surface. By controlling the composition and the mixing state of the solution and by controlling the bias of electrodes, we achieved controlled deposition of star polymer films with a specific nanostructure. These nanostructured films may have broad use in optical and biological device applications. 相似文献
4.
Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1). 相似文献
5.
Two and three-dimensional Ag nanoparticle ensembles were synthesized on deposited nanostructured column-void Si films simply by film immersion into pure Ag(2)SO(4) or AgNO(3) solutions. In addition to functioning as a reducer, this nanostructured material provides immobilization and monodispersion of the Ag nanoparticles due to its systematic nanoscale topography. This is accomplished without the requirement of a surfactant, capping agent, or linker. Kinetics, as monitored from plasmon optical extinction, and infrared spectroscopy suggest accompanying oxide growth limits and finally inhibits synthesis enabling nanoparticle size control. Kinetics is also limited by Ag+ transport through the voids unless the Si film is ultrathin. Our synthesis approach offers significant advantages for surface-enhanced molecular detection, including the absence of any agents on the nanoparticle surfaces and the ability to obtain nanoparticle ensembles on any substrate. 相似文献
6.
Recent progress in the synthesis of nanostructured silica-based materials through the self-assembly process using well-designed
alkoxysilane precursors is presented. Alkoxysilanes with covalently attached hydrophobic organic tails become amphiphilic
when hydrolyzed to form silanol groups, leading to the formation of various mesostructures upon evaporation of solvents. The
precursors having large oligosiloxane heads are particularly important because of their ability to form cylindrical assemblies,
providing a direct pathway to ordered porous silica by removal of the organic groups. Our recent research includes (i) templated-synthesis
of hierarchically ordered structures and (ii) design of molecules having chemically cleavable bonds to generate pores without
calcination. 相似文献
7.
Preparation and characterization of nanostructured thin films of Au and Ag nanoparticles synthesized by ascorbic acid on modified glass surface 下载免费PDF全文
Saadat Rastegarzadeh Mohammad Azarkish Shirin Abdali 《Surface and interface analysis : SIA》2015,47(10):961-968
Immobilization of Ag and Au nanoparticles (NPs) synthesized by ascorbic acid on chemically modified glass surface has been studied. 3‐[2‐(2‐Aminoethylamino)ethylamino]propyl‐trimethoxysilane (AMPTS), N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilan, and 3‐trimethoxysilyl‐1‐propanethiol (MSPT) were used as surface modifying agents. To improve immobilization efficiency, the ammonia solution has been used along with the silane reagents, which assisted to adsorb the metal NPs on glass surface. It was found that AMPTS and MSPT have considerable effect on deposition of Ag and AuNPs on glass substrate. The fabricated thin films were characterized by using UV‐Vis spectroscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy and subjected to antimicrobial resistance test. The UV–Vis spectra show a distinctive plasmon resonance absorbance peak for thin films of Au and AgNPs prepared with MSPT and AMPTS, respectively. Atomic force microscopy images indicate that formation of Au and AgNPs with spherical morphology after immobilization on the glass substrate and also the dimensions of NPs on the surface appear larger than those observed in the parent colloidal solution. Energy‐dispersive X‐ray spectroscopy measurements confirmed the presence of silver and gold on the modified glass surface, and elemental composition was measured. The Au and AgNPs thin films show antibacterial activity against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria in comparison with a blank sample. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Lee DJ Cho KY Jang S Song YS Youn JR 《Langmuir : the ACS journal of surfaces and colloids》2012,28(28):10488-10494
We explored a liquid slip, referred to as the Navier slip, at liquid-solid interface. Such a slip is provoked by the physicochemical features of the liquid-solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid-solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell's slip for Newtonian gases. 相似文献
9.
Elina Manova Daniela Paneva Nikolay Velinov Krassimir Tenchev 《Journal of solid state chemistry》2011,184(5):1153-1158
Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Mössbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe2O3. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium. 相似文献
10.
Zhuang Z Peng Q Zhuang J Wang X Li Y 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,12(1):211-217
A series of nickel selenides (NiSe2 microcrystals, Ni(1-x)Se and Ni3Se2 microspheres) has been successfully synthesized through a convenient, low-temperature hydrothermal method. A good nucleation and growth environment has been created by forming a uniform and transparent solution reaction system. The compositions (including the x value of Ni(1-x)Se), phase structures, as well as the morphologies of nickel selenides, can be controlled by adjusting the Ni/Se ratio of the raw materials, the pH, the reaction temperatures and times, and so forth. The newly produced Se microspheres in the system have been used as both reactant and in situ template to the Ni(1-x)Se microspheres. It is found that Ni(1-x)Se microspheres act as the intermediate precursor during the formation of Ni3Se2 microspheres. Under certain conditions, hexagonal NiSe microspheres can be converted into rhombohedral NiSe nanowires in solution. The formation mechanisms of a series of nickel selenides has been investigated in detail by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. This work has provided a general, simple, and effective method to control the composition, phase structure, and morphology of metal selenides in aqueous solution, which will be important for inorganic synthesis methodology and further applications of selenides. 相似文献
11.
Triaminoguanidinium dinitramide-calculations, synthesis and characterization of a promising energetic compound 总被引:1,自引:0,他引:1
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm. 相似文献
12.
We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure. 相似文献
13.
Muller F Fontaine P Remita S Fauré MC Lacaze E Goldmann M 《Langmuir : the ACS journal of surfaces and colloids》2004,20(12):4791-4794
An application of the radiolysis method using an X-ray synchrotron beam is developed as a novel approach to the synthesis of metal-organic films with controlled shapes and thickness. We demonstrate that a Langmuir monolayer deposited onto a silver ion containing subphase, irradiated by an incident beam impinging below the critical angle for total reflection, induces the synthesis of a stable nanostructured silver-organic ultrathin film at the air-water interface. The X-ray scattering is also used to monitor in situ the structure of the silver layer during the synthesis process. The layer is observed by atomic force microscopy after its transfer onto a silicon substrate. One observes a film thickness of 4.6 nm, in good agreement with the X-ray penetration depth, about 4.5 nm. The silver structure is oriented by the initial organic film phase. This experiment demonstrates the considerable potential of this approach to produce various controlled metal-organic films with a surfactant self-assembly as a template. 相似文献
14.
Dehydrogenation of five species including CH3OH, CH3O, H2COO, NH3, and H2O over clean and oxygen-modified copper surfaces has been investigated by the first-principle density functional calculations within the generalized gradient approximation. The reaction enthalpies and the activation energies have been calculated for 10 elementary steps corresponding to the direct and oxygen-assisted cleavage of X-H bonds (X = O, N, C). The DFT-GGA results showed that the pre-adsorbed oxygen always facilitates the dehydrogenation reaction by decreasing the reaction enthalpies and the activation energies. The obtained results are in general agreement with experimental observations. 相似文献
15.
16.
Oehzelt M Resel R Suess C Friedlein R Salaneck WR 《The Journal of chemical physics》2006,124(5):054711
The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures. 相似文献
17.
In the present study, the adsorption of a protein on a nanoparticle with a nanostructured surface, which is created using successively patterned Gaussian pillars (GPs), is simulated by considering the charge regulation within the electrical double layer of a silica nanoparticle (NP). Namely, the mathematical models for the adsorption mechanism, such as classical Langmuir model, extended Langmuir model, and two-state model, are coupled with charge regulation model. By this means, size and pH variables are able to included to the calculations. Moreover, free space, surface curvature, and conformational changes are also taken into account. For systematic investigation, the solution's pH, surface charge density, initial protein concentration, electrostatic charge of the protein, and the diameter of the spherical NP are varied. As a result, the vital properties of a nanoparticle, such as protonation/deprotonation, polarization, topography, and morphology, are considered in the current simulations. The surface charge density and surface chemistry change with NP and GP sizes. The present results reveal that the protein adsorption on an NP with a smooth surface reaches a faster complete surface coverage than an NP with a nanostructured surface. Both states of conformational changes are also affected by the presence of the GP. 相似文献
18.
Giancane G Filippo E Manno D Serra A Valli L 《Journal of colloid and interface science》2011,363(1):199-205
Langmuir-Schaefer (LS) films of copper(II) tetrakis-(isoprpoxy-carbonyl)-phthalocyanine (TiPCuPc) have been deposited onto various solid supports. Its floating film have been characterized at the air-water interface by means of Brewster Angle Microscopy and Langmuir curves. Vibrational modes of multilayer transferred LS film have been studied by Raman spectroscopy and the optical parameters (refractive index n and extinction coefficient k) have been determined in the visible range of the electromagnetic spectrum. Linearly polarized light absorbance measurements have been performed at room temperature in the 400-800 nm spectral range and the average orientation of the phthalocyanine rings have been estimated. Transmission electron microscopy has been also used to characterize the morphological properties of the LS film and a close packed arrangement of the deposited molecules has been observed. 相似文献
19.
A silsesquioxane was synthesized by the hydrolysis and polycondensation of (EtO)3Si(CH2)3NHCONH(CH2)11CH3 in tetrahydrofuran (THF) employing formic acid as catalyst. The silsesquioxane self-assembled into nanorods due to the strong H-bonds among urea groups and the tail-to-tail associations of organic chains. The nanostructuration was characterized by a variety of experimental techniques (FTIR, 29Si NMR, XRD, TEM, HRTEM, and SAED). A colloidal solution of the silsesquioxane in methanol was deposited on a carbon film generating coffee ring structures with nanoparticles located at the boundary of rings. The significance of these results is related to the intrinsic photoluminescence of silsesquioxanes containing urea groups. The possibility of patterning these hybrid polymers on a surface can give place to materials exhibiting periodically modulated optical properties with potential applications in optoelectronics and light-emitting devices. 相似文献
20.
Basova T Plyashkevich V Petraki F Peisert H Chassé T 《The Journal of chemical physics》2011,134(12):124703
The μ-(oxo)bis[phthalocyaninato] aluminum(III) (AlPc)(2)O films, with the crystallites oriented preferably in one direction, were obtained via chemical transformation of chloroaluminum(III) phthalocyanine AlClPc film upon its annealing in magnetic field. A comparative analysis of the influence of postdeposition annealing without and under applied magnetic field of 1 T on composition and morphology of AlClPc films has been carried out. The chemical transformation of AlClPc to (AlPc)(2)O on the substrate surface is studied by the methods of UV-vis and infrared spectroscopies, Raman, x-ray photoelectron spectroscopy as well as atomic force microscopy. Two interesting effects were observed upon heating the AlClPc films in magnetic field of 1 T. First, the temperature of the chemical transformation of AlClPc to (AlPc)(2)O decreased from 300 °C to 200 °C when magnetic field was applied during postdeposition annealing. Second, the formation of (AlPc)(2)O films with elongated crystallites with a preferential orientation was observed. The heating of (AlPc)(2)O films in a magnetic field at the same conditions did not demonstrate any effect on the structure and morphology of these films. 相似文献