首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silver and silver iodide nanocrystals have been synthesized in the water-in-CO(2) reverse microemulsions formed by the commonly used surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), in the presence of 2,2,3,3,4,4,5,5-octafluoro-1-pentanol as cosurfactant. The nanometer-sized aqueous domains in the microemulsion cores not only act as nanoreactors, but the surfactant interfacial monolayer also helps the stabilization of the metal and semiconductor nanoparticles. The transmission electron microscopy results show that silver and silver iodide nanocrystals with average diameters of 6.0 nm (standard deviation, SD=1.3 nm) and 5.7 nm (SD=1.4 nm), respectively, were formed. The results indicate that the method can be utilized as a general and economically viable approach for the synthesis of metal and semiconductor quantum dots in environmentally benign supercritical carbon dioxide.  相似文献   

2.
Titanium dioxide nanoparticles can be produced by the controlled hydrolysis of titanium tetraisopropoxide in water-in-CO2 (w/c) microemulsions stabilized with the surfactants ammonium carboxylate perfluoropolyether (PFPE-NH4) and poly(dimethyl amino ethyl methacrylate-block-1H,1H,2H,2H-perfluorooctyl methacrylate) (PDMAEMA-b-PFOMA); the greater control of hydrolysis and particle growth with PDMAEMA-b-PFOMA is consistent with the differences in the stabilities and interactions for these two microemulsions.  相似文献   

3.
A one‐step method was developed for preparing Ag2S quantum dots (QDs) using a common protein [bovine serum albumin (BSA)] to entrap QDs precursors (BSA–Ag+). Fluorescence (FL) and ultraviolet spectra showed that the molar ratio of Ag+/BSA, temperature, and pH are the crucial factors for the quality of QDs. The QDs absorption wavelength and emission wavelength were about 340 and 450 nm. The average QDs particle size was estimated to be less than 5 nm, determined by transmission electron microscopy. The X‐ray power diffraction and XPS results showed that the synthesized product was indeed monoclinic Ag2S. With Fourier transform infrared spectra and thermogravimetry analysis, there might be conjugated bonds between Ag2S QDs and –OH, –NH, and –SH groups in BSA. In addition, FL spectra suggest that the designed QDs can produce static quenching with BSA and the Stern–Volmer quenching constant (Ksv) was calculated as 2.145 × 104. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Catalytic hydrogenations of olefins took place effectively in supercritical CO2 with Pd0 nanoparticles dispersed in the fluid phase using a water-in-CO2 microemulsion consisting of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as a surfactant, and 1-octanol as a cosolvent. The hydrogenated products dissolved in supercritical CO2 can be separated from the octanol solution containing AOT microemulsions with Pd0 nanoparticles by phase separation (upper phase, supercritical CO2 with hydrogenated products; lower phase, 1-octanol containing AOT microemulsions with Pd0 nanoparticles) accompanied by reduction of CO2 pressure. After collecting the hydrogenated products by flowing the upper CO2 phase to a collection vessel, the Pd0 nanoparticles remaining in the lower phase can be redispersed into supercritical CO2 by pressurizing the system to a pressure where a homogeneous phase is attained. The redispersed nanoparticles can be reused as catalysts for the next runs of the hydrogenations. Triphenylethylene was hydrogenated to 1,1,2-triphenylethane at conversions of 100% (1st-3rd runs), >99% (4th run), and >96% (5th run) using the recycled Pd0 nanoparticles. The feasibility of using other organic solvents as cosolvents is also studied in the present paper.  相似文献   

5.
We present a new photosensitizer – Ag2S quantum dots (QDs) – for solar cells. The QDs were grown by the successive ionic layer adsorption and reaction deposition method. The assembled Ag2S-QD solar cells yield a best power conversion efficiency of 1.70% and a short-circuit current of 1.54 mA/cm2 under 10.8% sun. The solar cells have a maximal external quantum efficiency (EQE) of 50% at λ = 530 nm and an average EQE of ~ 42% over the spectral range of 400–1000 nm. The effective photovoltaic range covers the visible and near-infrared spectral regions and is ~ 2–4 times broader than that of the cadmium chalcogenide systems — CdS and CdSe. The results show that Ag2S QDs can be used as a highly efficient and broadband sensitizer for solar cells.  相似文献   

6.
Hybrid fluorocarbon-hydrocarbon (F-H) sulfate surfactants are shown to be efficient stabilizers in water-in-CO2 (w/c) microemulsions. The chain structure and F-H ratio affect the regions of P-T phase stability and aggregation structure in these w/c phases. High-pressure near-infrared spectroscopy and small-angle neutron scattering measurements of microemulsified water provide evidence for the stabilization of w/c microemulsion droplets. The relative lengths of the two chains were found to influence the favored aggregation structure: for symmetric chain surfactants (F8H8, F7H7) spherical reverse micelles are present, but for asymmetric chain surfactants (F7H4, F8H4) extended cylinder aggregates form. These changes in aggregation are consistent with different surfactant packing parameters owing to the controlled variations in molecular structure. Furthermore, the general order of w/c phase transition pressures (F8H8 < F7H7 and F8H4 < F7H4) is in line with estimations of surfactant fractional free volume, as proposed by Johnston et al. (J. Phys. Chem. B 2004, 108, 1962-1966). Studies of adsorption at the poly(dimethylsiloxane)-water interface are shown to be valuable for assessing the CO2-philicity of new surfactants. All in all, the symmetric F8H8 and F7H7 analogues are seen to be the most efficient compounds from this class for applications in CO2.  相似文献   

7.
UV light irradiation of TiO(2) (λ > 320 nm) in a mixed solution of AgNO(3) and S(8) has led to the formation of Ag(2)S quantum dots (QDs) on TiO(2), while Ag nanoparticles (NPs) are photodeposited without S(8). Photoelectrochemical measurements indicated that the Ag(2)S photodeposition proceeds via the preferential reduction of Ag(+) ions to Ag(0), followed by the chemical reaction with S(8). The application of this in situ photodeposition technique to mesoporous (mp) TiO(2) nanocrystalline films coated on fluorine-doped SnO(2) (FTO) electrodes enables formation of Ag(2)S QDs (Ag(2)S/mp-TiO(2)/FTO). Ag(2)S/mp-TiO(2)/FTO has the interband transition absorption in the whole visible region, while in the spectrum of Ag/mp-TiO(2)/FTO, a localized surface plasmon resonance absorption of Ag NPs is present centered at 490 nm. Ag(2)S QD-sensitized photoelectrochemical cells using the Ag(2)S/mp-TiO(2)/FTO and Ag/mp-TiO(2)/FTO photoanodes were fabricated. Under illumination of one sun, the Ag(2)S photoanode cell yielded H(2) at a rate of 0.8 mL·h(-1) with a total conversion efficiency of 0.29%, whereas the Ag/mp-TiO(2)/FTO photoanode is inactive.  相似文献   

8.

The review discusses the main methods used to obtain surface-modified quantum dots, specifically silicon, heavy metal chalcogenide and pnictide semiconductor nanoparticles. Examples of transformation processes of the grafted layer are considered. The importance of surface modification of AIIBVI- and AIIIBV-type semiconductor nanoparticles for the practical application of quantum dots is shown. It was determined that the most promising areas of their practical application are biology, medicine, and pharmacology. Special attention is paid to the hydrophilization of quantum dots, because only these materials can be used in biomedical applications. Modification of the quantum dot surface with amino acids is considered.

  相似文献   

9.
The solubility of Ls-54 surfactant in supercritical CO(2) was determined. It was found that the surfactant was highly soluble in SC CO(2) and the water-in-CO(2) microemulsions could be formed, despite it being a non-fluorous and non-siloxane nonionic surfactant. The main reasons for the high solubility and formation of the microemulsions may be that the surfactant has four CO(2)-philic groups (propylene oxide) and five hydrophilic groups (ethylene oxide) and its molecular weight are relatively low. The results of this work provide useful information for designing CO(2)-soluble non-fluorous and non-siloxane surfactants. The phase behavior of the CO(2)/Ls-54/H(2)O system, solvatochromic probe study, and the UV spectrum of lysozyme proved the existence of water domains in the SC CO(2) microemulsions. The method of synchrotron radiation small-angle X-ray scattering was used to obtain the structural information on the Ls-54 based water-in-CO(2) reverse micelles. By using the Guinier plot (ln I(q) versus q (2)) on the data sets in a defined small q range (0.022-0.040 A(-1)), the radii of the reverse micelles were obtained at different pressures and molar ratio of water to surfactant, W(0), which were in the range of 20.4-25.2 A.  相似文献   

10.
A strategy is presented that involes coupling Na(2)SeO(3) reduction with the binding of silver ions and alanine in a quasi-biosystem to obtain ultrasmall, near-infrared Ag(2)Se quantum dots (QDs) with tunable fluorescence at 90 °C in aqueous solution. This strategy avoids high temperatures, high pressures, and organic solvents so that water-dispersible sub-3 nm Ag(2)Se QDs can be directly obtained. The photoluminescence of the Ag(2)Se QDs was size-dependent over a wavelength range from 700 to 820 nm, corresponding to sizes from 1.5 ± 0.4 to 2.4 ± 0.5 nm, with good monodispersity. The Ag(2)Se QDs are less cytotoxic than other nanomaterials used for similar applications. Furthermore, the NIR fluorescence of the Ag(2)Se QDs could penetrate through the abdominal cavity of a living nude mouse and could be detected on its back side, demonstrating the potential applications of these less toxic NIR Ag(2)Se QDs in bioimaging.  相似文献   

11.
Nanoparticle-based probes are emerging as alternatives to molecular probes due to their various advantages, such as bright and tunable optical property, enhanced chemical and photochemical stability, and ease of introduction of multifunctionality. This work presents a simple and general approach for functionalizing various nanoparticle systems for use as glycobiological probes. Silica-coated nanoparticles of Ag, Fe3O4, and ZnS-CdSe were synthesized and functionalized with dextran. The resulting 10-40-nm-sized particles were robust, water-soluble, colloidally stable, and biochemically active.  相似文献   

12.
This work investigates the photovoltaic properties of new-architecture Ag2S quantum dot-sensitized solar cells (QDSCs) fabricated on WO3 electrodes. Liquid-junction Ag2S QDSCs were fabricated from QDs synthesized using the successive ionic layer adsorption and reaction process. The optimal QDSC yielded an efficiency η of 0.20 % under a 100-mW/cm2 light illumination. Coating the QDSC with a compact layer and a scattering layer improved η to 0.31 % with a short-circuit current density J sc of 5.81 mA/cm2 and an open-circuit voltage V oc of 0.21 V. η increased to 0.53 % at a reduced 0.1 sun illumination with a J sc of 1.11 mA/cm2. The external quantum efficiency (EQE) spectrum covered the spectral range of 350–900 nm with a maximal EQE of 29 % at λ?=?650 nm. This work demonstrates the feasibility of the new-configuration Ag2S QDSCs fabricated on WO3 electrodes.  相似文献   

13.
We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.  相似文献   

14.
以巯基乙酸(HSCH2 COOH,TGA)为稳定剂,在水相中合成高量子产率CdTe量子点(QDs),产率达68%.用紫外.可见分光光度计、荧光分光光度计、红外光谱仪、透射电子显微镜等对制备的样品进行表征.结果表明:CdTe Ods紫外吸收峰及荧光发射峰均随回流时间延长而红移,即粒径在不断增大;荧光发射峰窄而对称,表明QDs分散性好、大小较均一,半峰宽随回流时间延长而逐渐变宽,表明粒径在增大的同时粒径分布范围也变宽;从TEM及紫外.可见光谱推算,可知其粒径约为3 nm;红外光谱图说明作为稳定剂的巯基乙酸对QDs表面起到修饰作用.  相似文献   

15.
表面修饰Ag_2S纳米微粒的合成及摩擦学行为研究   总被引:5,自引:1,他引:4  
在水醇混合介质中,采用同阳离子共沉淀法合成了有机化合物表面修饰的Ag2S纳米微粒,在高速钢基底上制备成膜,研究了它的摩擦学特性。结果表明:修饰后的Ag2S纳米微粒粒径小,性能稳定,在有机介质中分散成透明溶液。AgDDP膜和Ag2S DDP膜均可显著降低钢基底的摩擦系数。研究证实表面修饰Ag2S纳米微粒的摩擦作用机制是在较低负荷下表面修饰层起主要作用,在较高负荷下Ag2S纳米核起主要的承载和减摩抗磨作用。  相似文献   

16.
We present the synthesis of Cd(3)As(2) colloidal quantum dots luminescent from 530 to 2000 nm. Previous reports on quantum dots emitting in the infrared are primarily limited to the lead chalcogenides and indium arsenide. This work expands the availability of high quality infrared emitters.  相似文献   

17.
With thiourea (Tu) as sulfur source and the assistance of CTAB, faceted and cubic Ag2S nanocrystals have been synthesized successfully via a simple hydrothermal route by modulating the ratio of Tu and AgNO3, respectively. It is the first report that the fabrication of faceted and cubic Ag2S nanocrystals takes place in aqueous medium, which makes the synthesis environmentally benign, user-friendly, economical and practicable to industry production. It is also found that the cooperation effect of CTAB and Tu should be responsible for the formation of the as-obtained Ag2S nanocrystals. The UV-vis absorption spectrum of the products shows obvious blue shift.  相似文献   

18.
以柠檬酸三钠为稳定剂在水溶液中合成了水溶性CdSe量子点,用X射线粉末衍射、透射电镜、紫外-可见吸收光谱和荧光发射光谱对CdSe量子点的结构、形貌及其荧光性质进行了表征.结果表明合成的CdSe量子点为立方闪锌矿结构,呈球形,分散性良好,平均尺寸约为2.6nm,具有窄且对称的荧光发射光谱,半峰宽为45nm.  相似文献   

19.
Graphitized carbon quantum dots (CQDs) were synthesized by a simple hydrothermal process with cetyltrimethylammonium bromide (CTAB) as the starting material and nitric acid as surface oxidant. The photoluminescent quantum yield (QY) of CQDs could be greatly enhanced through surface esterification with glycol. Based on the structure characterization, we proposed that the CQDs consisted of the stack of graphene sheets sized several nanometers and their excitation-dependent photoluminescence (PL) should be attributed to the n→π* transition of CO bond of surface carboxylic groups. And the PL of CQDs was obviously enhanced by the esterification of carboxylic groups, possibly due to the increase of the molecular coplanarity or the rigidity.  相似文献   

20.
Synthesis and application of quantum dots FRET-based protease sensors   总被引:2,自引:0,他引:2  
Preparation of FRET-based quantum dots as protease sensors-RGDC peptide molecules are bound to the surface of CdSe/ZnS quantum dots. The peptide molecules are then labeled with rhodamine dye molecules. The emission color of the quantum dots change from green to orange due to fluorescence resonance energy transfer (FRET) between the quantum dots and the bound rhodamine molecules. Cleavage of the peptide by selective proteases releases the rhodamine molecules from the quantum dots surface, which results in decreasing FRET efficiency between the quantum dots and the rhodamine molecules. The emission color of the quantum dots changes back to green.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号