首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the long time behavior of the solution to some McKean–Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction parameter, any solution converges to the unique (in this case) invariant probability measure. To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic external quantity (we call it the external current). For constant current, we obtain the convergence to the invariant probability measure. Using a perturbation method, we extend this result to more general external currents. Finally, we prove the result for the non-linear McKean–Vlasov equation.  相似文献   

2.
Summary We investigate the problem of singular perturbation for a reaction-diffusion equation with additive noise (or a stochastic partial differential equation of Ginzburg-Landau type) under the situation that the reaction term is determined by a potential with double-wells of equal depth. As the parameter (the temperature of the system) tends to 0, the solution converges to one of the two stable phases and consequently the phase separation is formed in the limit. We derive a stochastic differential equation which describes the random movement of the phase separation point. The proof consists of two main steps. We show that the solution stays near a manifoldM of minimal energy configurations based on a Lyapunov type argument. Then, the limit equation is identified by introducing a nice coordinate system in a neighborhood ofM .Research partially supported by Japan Society for the Promotion of Science  相似文献   

3.
考虑一类含非线性奇异项和正参数ε的平均曲率型方程的Dirichlet问题.证明了当ε充分小时上述问题至少存在一个古典解;而当ε充分大时这一问题没有古典解.  相似文献   

4.
The purpose of this paper is to establish Bogoliubov averaging principle of stochastic reaction–diffusion equation with a stochastic process and a small parameter. The solutions to stochastic reaction–diffusion equation can be approximated by solutions to averaged stochastic reaction–diffusion equation in the sense of convergence in probability and in distribution. Namely, we establish a weak law of large numbers for the solution of stochastic reaction–diffusion equation.  相似文献   

5.
Summary In this paper we study blow up of the equation , where is a two-dimensional white noise field and where Dirichlet boundary conditions are enforced. It is known that if <3/2, then the solution exists for all time; in this paper we show that if is much larger than 3/2, then the solution blows up in finite time with positive probability. We prove this by considering how peaks in the solution propagate. If a peak of high mass forms, we rescale the equation and divide the mass of the peak into a collection of peaks of smaller mass, and these peaks evolve almost independently. In this way we compare the evolution ofu to a branching process. Large peaks are regarded as particles in this branching process. Offspring are peaks which are higher by some factor. We show that the expected number of offspring is greater than one when is much larger than 3/2, and thus the branching process survives with positive probability, corresponding to blowup in finite time.Supported by NSF grant DMS-9021508, NSA grant MDA904-910-H-0034, and ARO Grant MSI DAAL03-91-C-0027Supported by ONR grant N00014-91-J-1526.  相似文献   

6.
We study the Cauchy–Dirichlet problem for a second-order quasilinear parabolic stochastic differential equation (SPDE) in a domain with a zero order noise term driven by a cylindrical Brownian motion. Considering its solution as a function with values in a probability space and using the methods of deterministic partial differential equations, we establish the existence and uniqueness of a strong solution in Hölder classes with weights.  相似文献   

7.
In this paper we give a semigroup-based definition of the solution of the Gurtin-Pipkin equation with Dirichlet boundary conditions. It turns out that the dominant term of the input-to-state map is the control to displacement operator of the wave equation. This operator is surjective if the time interval is long enough. We use this observation in order to prove exact controllability in finite time of the Gurtin-Pipkin equation.  相似文献   

8.
This paper deals with the numerical analysis of time dependent parabolic partial differential equation. The equation has bistable nonlinearity and models electrical activity in a neuron. A qualitative analysis of the model is performed by means of a singular perturbation theory. A small parameter is introduced in the highest order derivative term. This small parameter is known as singular perturbation parameter. Boundary layers occur in the solution of singularly perturbed problems when the singular perturbation parameter tend to zero. These boundary layers are located in neighbourhoods of the boundary of the domain, where the solution has a very steep gradient. Most of the conventional methods fails to capture this effect. A numerical scheme is constructed to overcome this discrepancy in literature. A rigorous analysis is carried out to obtain a-priori estimates on the solution of the problem and its derivatives. It is then proven that the numerical method is unconditionally stable. Convergence and stability analysis is carried out. A set of numerical experiment is carried out and it is observed that the scheme faithfully mimics the dynamics of the model.  相似文献   

9.
This paper is concerned with an inhomogeneous nonlocal dispersal equation. We study the limit of the re-scaled problem of this nonlocal operator and prove that the solutions of the re-scaled equation converge to a solution of the Fokker-Planck equation uniformly. We then analyze the nonlocal dispersal equation of an inhomogeneous diffusion kernel and find that the heterogeneity in the classical diffusion term coincides with the inhomogeneous kernel when the scaling parameter goes to zero.  相似文献   

10.
In this article, a class of second-order differential equations on [0,1], driven by a γ-Hölder continuous function for any value of γ∈(0,1) and with multiplicative noise, is considered. We first show how to solve this equation in a pathwise manner, thanks to Young integration techniques. We then study the differentiability of the solution with respect to the driving process and consider the case where the equation is driven by a fractional Brownian motion, with two aims in mind: show that the solution that we have produced coincides with the one which would be obtained with Malliavin calculus tools, and prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure.  相似文献   

11.
Summary Consider a stochastic differential equation on d with smooth and bounded coefficients. We apply the techniques of the quasi-sure analysis to show that this equation can be solved pathwise out of a slim set. Furthermore, we can restrict the equation to the level sets of a nondegenerate and smooth random variable, and this provides a method to construct the solution to an anticipating stochastic differential equation with smooth and nondegenerate initial condition.  相似文献   

12.
Summary We consider a one-dimensional linear wave equation with a small mean zero dissipative field and with the boundary condition imposed by the so-called Goursat problem. In order to observe the effect of the randomness on the solution we perform a space-time rescaling and we rewrite the problem in a diffusion approximation form for two parameter processes. We prove that the solution converges in distribution toward the solution of a two-parameter stochastic differential equation which we identify. The diffusion approximation results for oneparameter processes are well known and well understood. In fact, the solution of the one-parameter analog of the problem we consider here is immediate. Unfortunately, the situation is much more complicated for two-parameter processes and we believe that our result is the first one of its kind.Partially supported by ONR N00014-91-J-1010  相似文献   

13.
We consider a semilinear elliptic Dirichlet problem with jumping nonlinearity and, using variational methods, we show that the number of solutions tends to infinity as the number of jumped eigenvalues tends to infinity. In order to prove this fact, for every positive integer k we prove that, when a parameter is large enough, there exists a solution which presents k interior peaks. We also describe the asymptotic behaviour and the profile of this solution as the parameter tends to infinity.  相似文献   

14.
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the non-linear stochastic heat equation in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.  相似文献   

15.
Summary We first prove that a Markov diffusion satisfies a second order stochastic differential equation involving the invariants associated to its reciprocal class as a reciprocal process. Some properties of the noise term are given. We also prove that this equation can be viewed as an Euler Lagrange equation in a problem of calculus of variations. In the non markovian case, a Bernstein bridge is shown to satisfy the same equation but in a weak sense.  相似文献   

16.
We consider the Cauchy problem for a semilinear heat equation with power nonlinearity. It is known that the equation has a singular steady state in some parameter range. Our concern is a solution with a moving singularity that is obtained by perturbing the singular steady state. By formal expansion, it turns out that the remainder term must satisfy a certain parabolic equation with inverse-square potential. From the well-posedness of this equation, we see that there appears a critical exponent. Paying attention to this exponent, for a prescribed motion of the singular point and suitable initial data, we establish the time-local existence, uniqueness and comparison principle for such singular solutions. We also consider solutions with multiple singularities.  相似文献   

17.
We consider a semilinear partial differential equation (PDE) of non-divergence form perturbed by a small parameter. We then study the asymptotic behavior of Sobolev solutions in the case where the coefficients admit limits in C?esaro sense. Neither periodicity nor ergodicity will be needed for the coefficients. In our situation, the limit (or averaged or effective) coefficients may have discontinuity. Our approach combines both probabilistic and PDEs arguments. The probabilistic one uses the weak convergence of solutions of backward stochastic differential equations (BSDE) in the Jakubowski S-topology, while the PDEs argument consists to built a solution, in a suitable Sobolev space, for the PDE limit. We finally show the existence and uniqueness for the associated averaged BSDE, then we deduce the uniqueness of the limit PDE from the uniqueness of the averaged BSDE.  相似文献   

18.
We investigate the existence of non-constant uniformly-bounded minimal solutions of the Allen–Cahn equation on a Gromov-hyperbolic group. We show that whenever the Laplace term in the Allen–Cahn equation is small enough, there exist minimal solutions satisfying a large class of prescribed asymptotic behaviours. For a phase field model on a hyperbolic group, such solutions describe phase transitions that asymptotically converge towards prescribed phases, given by asymptotic directions. In the spirit of de Giorgi's conjecture, we then fix an asymptotic behaviour and let the Laplace term go to zero. In the limit we obtain a solution to a corresponding asymptotic Plateau problem by Γ-convergence.  相似文献   

19.
In this paper, weconsider the evolution of a soliton when dissipative lose exists. By means of non-perturbed method, an exact envelope wave solution of nonlimear Schroedinger equation with dissipative term is obtained. It is shown that when Г=γ0/(1 2γot), the solution given here still maintains the hyperbolic secant profile.  相似文献   

20.
This article is devoted to the study of a mathematical model arising in the mathematical modeling of pulse propagation in nerve fibers. A widely accepted model of nerve conduction is based on nonlinear parabolic partial differential equations. When considered as part of a particular initial boundary value problem the equation models the electrical activity in a neuron. A small perturbation parameter ε is introduced to the highest order derivative term. The parameter if decreased, speeds up the fast variables of the model equations whereas it does not affect the slow variables. In order to formally reduce the problem to a discussion of the moment of fronts and backs we take the limit ε → 0. This limit is singular and is therefore the solution tends to a slowly moving solution of the limiting equation. This leads to the boundary layers located in the neighborhoods of the boundary of the domain where the solution has very steep gradient. Most of the classical methods are incapable of providing helpful information about this limiting solution. To this effort a parameter robust numerical method is constructed on a piecewise uniform fitted mesh. The method consists of standard upwind finite difference operator. A rigorous analysis is carried out to obtain priori estimates on the solution of the problem and its derivatives. A parameter uniform error estimate for the numerical scheme so constructed is established in the maximum norm. It is then proven that the numerical method is unconditionally stable and provides a solution that converges to the solution of the differential equation. A set of numerical experiment is carried out in support of the predicted theory, which validates computationally the theoretical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号