首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用波长为266nm的激光光解CHBr3产生CH自由基,其与NO反应作为NCO自由基的来源.在298K,总压2660Pa的条件下,采用激光诱导荧光的方法,研究了NCO自由基与SO2、CS2的反应.得到了NCO自由基与SO2、CS2双分子反应速率常数分别为(1.8±0.3)×10-11和(3.1±0.4)×10-12cm3·molecule-1·s-1.对这两个反应在B3LYP/6-31 G(d)的水平上进行理论研究的结果表明,NCO自由基与SO2、CS2的反应是加成反应,其机理是NCO自由基中的N原子攻击反应物的中心原子,得到加成产物.  相似文献   

2.
C2H3+NO2反应速率常数的研究   总被引:6,自引:0,他引:6  
利用激光光解C2H3Br产生C2H3自由基,在气相298 K, 总压2.66×103 Pa的条件下,研究C2H3与NO2的反应,用激光光解-激光诱导荧光(LP-LIF)检测中间产物OH自由基的相对浓度随着反应时间的变化关系,报导了双分子反应C2H3+NO2的速率常数k(C2H3+NO2)=(1.8±0.05)×10-11cm3•molec.-1•s-1,同时也得到OH+NO2反应的速率常数k(OH+NO2)=(2.1±0.15)×10-12 cm3•molec.-1•s-1.  相似文献   

3.
用激光光解-激光诱导荧光方法研究了室温下(T=293 K) HCF(X~1A)自由基与SO2分子的反应动力学. 实验中HCF(X~1A)自由基是由213 nm激光光解HCFBr2产生的, 用激光诱导荧光(LIF)检测HCF(X~1A)自由基的相对浓度随着反应时间的变化, 得到此反应的二级反应速率常数为: k=(1.81±0.15)×10-12 cm3•molecule-1•s-1, 体系总压为1862 Pa. 高精度理论计算表明, HCF(X~1A)和SO2分子反应的机理是典型的加成-消除反应. 我们运用RRKM-TST理论计算了此二级反应速率常数的温度效应和压力效应, 计算结果和室温下测定的二级反应速率常数符合得较好.  相似文献   

4.
用266nm激光光解CHBr3分子产生CH(C)态自由基,通过测量CH(C^2Σ^+→X^2Ⅱ)的总荧光信号强度来测定室温下O2、N2、n-C5H12、n-C6H14和n-C7H16对CH(C2Σ^+,v′=0)的猝灭常数。结果表明,这些碰撞伴侣(O2和N2例外)对CH(X、A、B和C)的反应或猝灭速率常数k存在下列关系:k(X)〉k(B)〉k(A)≈k(C),且烷烃分子对CH(C)态的猝灭速率常  相似文献   

5.
关于反应速率、反应速率常数及指前因子的讨论   总被引:1,自引:0,他引:1  
靳福全 《大学化学》2013,28(2):75-76
针对物理化学动力学中反应速率、反应物消耗速率及产物生成速率,反应速率常数、反应物消耗速率常数及产物生成速率常数,指前因子、反应物消耗指前因子及产物生成指前因子,对它们与化学计量方程的写法及反应组分的选取之间的关系进行了讨论,对其单位中物质的量单位mol作了解释,指明半衰期公式中应该用与反应物对应的速率常数kA。  相似文献   

6.
采用密度泛函和量子化学从头算方法, 对NCO自由基和O, N原子反应的势能面进行了理论研究, 讨论了主要的反应通道. 这两种自由基反应的机理比较类似, 初始都有两种进攻方式. NCO与O的主反应通道是O原子从N端无势垒加合, 经过一低垒过渡态, 得到稳定产物P1(CO+NO), 而对NCO与N反应得到了一完整反应通道和无垒加合产物.  相似文献   

7.
用激光光解-激光诱导荧光方法研究了室温下(T=293K)HCF(X%A′)自由基与SO2分子的反应动力学.实验中1HCF(X%A′)自由基是由213nm激光光解HCFBr2产生的,用激光诱导荧光(LIF)检测HCF(X%A′)自由基的相对浓度随着11反应时间的变化,得到此反应的二级反应速率常数为:k=(1.81±0.15)×10-12cm3?molecule-1?s-1,体系总压为1862Pa.高精度理论计算表明,HCF(X%A′)和SO2分子反应的机理是典型的加成-消除反应.我们运用RRKM-TST理论计算了1此二级反应速率常数的温度效应和压力效应,计算结果和室温下测定的二级反应速率常数符合得较好.  相似文献   

8.
由于燃烧机理和大气化学过程研究的需要,人们对有机化合物分子,如烷烃、烯烃及其衍生物与一些自由基,如O、OH和卤素原子的反应速率常数进行了广泛的测定。但酮类分子与这些自由基的研究则报道得很少,尽管人们早已发现酮类化合物是碳氢化合物被NO_x光氧化过程中产生的中间化合物。就我们所知,除有少量的关于O(~3P))原子与酮类分子反应速率常数测定的文献报道外,我们在前文中报道了用流动微波放电——化学发光方法测  相似文献   

9.
运用脉冲激光光解-激光诱导荧光(PLP-LIF)的方法在298-673 K的温度范围内测量了C2(a3Пu)自由基与含硫小分子(H2S,SO2,CS2)气相反应的双分子反应速率常数.获得的速率常数可以用Arrhenius公式表达如下(单位:cm3·molecule-1·s-1):k(H2S)=(1.61±0.06)×10-12exp[-(180.91±15.73)/T],k(SO2)=(1.26±0.10)×10-15×exp[(2230.68±27.77)/T],k(CS2)=(1.17±0.02)×10-10exp[(253.31±7.69)/T];误差为2σ.由获得的双分子速率常数及所表现的正温度效应,认为C2(a3Пu)与H2S反应遵循抽氢反应机理;C2(a3Пu)与SO2反应是无能垒的过程,反应速率表现出强的负温度依赖关系;根据较大的双分子速率常数及其呈现的负温度效应我们认为,C2(a3Пu)与CS2反应遵循加成反应机理.  相似文献   

10.
酮类分子反应是大气化学反应中的一个中间反应.在300--500K范围内,我们对酮类分子和O(~3P)原子反应速率常数作了系列测定.为了估算大气化学和燃烧化学反应条件下的反应速率常数,本文用过渡态理论将实验结果外推到200—2000K范围内.同时对  相似文献   

11.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

12.
以过渡状态理论为基础,研究了单分子振动选模反应的微正则系综速率常数的计算方法.在计算中考虑了量子力学隧道效应校正及振动对沿IRC运动的耦合作用校正.以反应C=CH(F)→HC≡CF的氢迁移反应和C=CF2→FC≡CF的氟迁移反应为例,研究了它们的面外振动选模反应的速率常数.结果表明,这两个反应在低能区有明显的选模性,在高能区选模性减弱.  相似文献   

13.
以过渡状态理论为基础,研究了单分子振动选模反应的微正则系综速率常数的计算方法.在计算中考虑了量子力学隧道效应校正及振动对沿IRC运动的耦合作用校正.以反应C=CH(F)→HC≡CF的氢迁移反应和C=CF2→FC≡CF的氟迁移反应为例,研究了它们的面外振动选模反应的速率常数.结果表明,这两个反应在低能区有明显的选模性,在高能区选模性减弱.  相似文献   

14.
过氧烷基自由基分子内氢迁移是低温燃烧反应中的一类重要基元反应. 本文用等键反应方法计算了该类反应的动力学参数. 所有反应物、过渡态、产物的几何结构均在B3LYP/6-311+G(d,p)水平下优化得到. 本文提出了用过渡态反应中心几何结构守恒作为反应类判据, 并将该分子内氢迁移反应分为四类, 包括(1,3)、(1,4)、(1,5)、(1,n) (n=6, 7, 8)氢迁移类. 分别将这4 类反应类中最小反应体系作为类反应的主反应, 并分别在B3LYP/6-311+G(d,p)低水平和CBS-QB3 高水平下得到其近似能垒和精确能垒. 其余氢迁移反应作为目标反应, 在B3LYP/6-311+G(d,p)低水下计算得到其近似能垒, 再采用等键反应方法校正得到目标反应的精确反应势垒和精确速率常数. 研究表明, 采用等键反应方法只需在低水平用从头算计算就可以得到大分子反应体系的高精度能垒和速率常数值, 且本文按等键反应本质的分类方法更能揭示反应类的本质, 并对反应类的定义给出了客观标准. 本文的研究为碳氢化合物低温燃烧模拟中重要的过氧烷基分子内氢迁移反应提供了准确的动力学参数.  相似文献   

15.
利用自制的烟雾箱系统研究了臭氧与二乙胺和三乙胺的气相反应动力学. 实验过程中保证二乙胺和三乙胺浓度远远大于臭氧浓度, 使得实验在准一级条件下进行. 加入环己烷以消除实验过程中可能产生的OH自由基对反应的影响. 在(298±1) K和1.01×105 Pa条件下, 测得臭氧与二乙胺和三乙胺反应的绝对速率常数值分别为(1.33±0.15)×10-17和(8.20±1.01)×10-17 cm3·molecule-1·s-1. 与文献中已有的其它胺类的臭氧反应数据比较后发现, 臭氧与胺的反应可以用亲电反应机制来解释. 另外, 通过对比发现, 臭氧与三取代的烷基胺类的反应速率要远远大于其与二取代的烷基胺类的反应速率. 这在一定程度上可有助于解释外场观测到的气溶胶相中二烷基胺盐较多的事实. 利用测得的速率常数和大气中臭氧浓度, 还估算了二乙胺和三乙胺与臭氧反应的大气寿命. 结果显示, 与臭氧的反应是二乙胺和三乙胺在大气中的一种重要的消除途径, 尤其是在污染严重地区.  相似文献   

16.
利用自制的烟雾箱系统研究了臭氧与二乙胺和三乙胺的气相反应动力学. 实验过程中保证二乙胺和三乙胺浓度远远大于臭氧浓度, 使得实验在准一级条件下进行. 加入环己烷以消除实验过程中可能产生的OH自由基对反应的影响. 在(298±1) K和1.01×105 Pa条件下, 测得臭氧与二乙胺和三乙胺反应的绝对速率常数值分别为(1.33±0.15)×10-17和(8.20±1.01)×10-17 cm3·molecule-1·s-1. 与文献中已有的其它胺类的臭氧反应数据比较后发现, 臭氧与胺的反应可以用亲电反应机制来解释. 另外, 通过对比发现, 臭氧与三取代的烷基胺类的反应速率要远远大于其与二取代的烷基胺类的反应速率. 这在一定程度上可有助于解释外场观测到的气溶胶相中二烷基胺盐较多的事实. 利用测得的速率常数和大气中臭氧浓度, 还估算了二乙胺和三乙胺与臭氧反应的大气寿命. 结果显示, 与臭氧的反应是二乙胺和三乙胺在大气中的一种重要的消除途径, 尤其是在污染严重地区.  相似文献   

17.
臭氧与二乙胺和三乙胺气相反应的速率常数(英文)   总被引:1,自引:0,他引:1  
利用自制的烟雾箱系统研究了臭氧与二乙胺和三乙胺的气相反应动力学.实验过程中保证二乙胺和三乙胺浓度远远大于臭氧浓度,使得实验在准一级条件下进行.加入环己烷以消除实验过程中可能产生的OH自由基对反应的影响.在(298±1)K和1.01×105Pa条件下,测得臭氧与二乙胺和三乙胺反应的绝对速率常数值分别为(1.33±0.15)×10-17和(8.20±1.01)×10-17cm3·molecule-1·s-1.与文献中已有的其它胺类的臭氧反应数据比较后发现,臭氧与胺的反应可以用亲电反应机制来解释.另外,通过对比发现,臭氧与三取代的烷基胺类的反应速率要远远大于其与二取代的烷基胺类的反应速率.这在一定程度上可有助于解释外场观测到的气溶胶相中二烷基胺盐较多的事实.利用测得的速率常数和大气中臭氧浓度,还估算了二乙胺和三乙胺与臭氧反应的大气寿命.结果显示,与臭氧的反应是二乙胺和三乙胺在大气中的一种重要的消除途径,尤其是在污染严重地区.  相似文献   

18.
利用自制的烟雾箱系统研究了臭氧与二乙胺和三乙胺的气相反应动力学. 实验过程中保证二乙胺和三乙胺浓度远远大于臭氧浓度, 使得实验在准一级条件下进行. 加入环己烷以消除实验过程中可能产生的OH自由基对反应的影响. 在(298±1) K和1.01×105 Pa条件下, 测得臭氧与二乙胺和三乙胺反应的绝对速率常数值分别为(1.33±0.15)×10-17和(8.20±1.01)×10-17 cm3·molecule-1·s-1. 与文献中已有的其它胺类的臭氧反应数据比较后发现, 臭氧与胺的反应可以用亲电反应机制来解释. 另外, 通过对比发现, 臭氧与三取代的烷基胺类的反应速率要远远大于其与二取代的烷基胺类的反应速率. 这在一定程度上可有助于解释外场观测到的气溶胶相中二烷基胺盐较多的事实. 利用测得的速率常数和大气中臭氧浓度, 还估算了二乙胺和三乙胺与臭氧反应的大气寿命. 结果显示, 与臭氧的反应是二乙胺和三乙胺在大气中的一种重要的消除途径, 尤其是在污染严重地区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号