首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The decay modesΣ ± ± γ, Σ +,Σ + →pe + e }- were studied in the 81 cm Saclay hydrogen bubble chamber. In the radiative decayΣ ± ± γ only low momentum pions which stop in the chamber were accepted. We obtain the following branching ratios: (1) $$\frac{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + \gamma , p_{\pi + }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + )}} = (2.7 \pm 0.5) \times 10^{ - 4} ,$$ (2) $$\frac{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - \gamma , p_{\pi - }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - )}} = (1.0 \pm 0.2) \times 10^{ - 4} ,$$ (3) $$\frac{{\Gamma {\text{(}}\sum ^ + \to p\gamma {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (2.1 \pm 0.3) \times 10^{ - 3} ,$$ (4) $$\frac{{\Gamma {\text{(}}\sum ^ + \to pe^ + e^ - {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (1.5 \pm 0.9) \times 10^{ - 5} .$$ The radiative branching ratios (1) and (2) agree well with theoretical calculations and confirm very strongly the assignmentS wave toΣ ? →nπ ? andP wave toΣ + + decay. The branching ratio (4) is based on 3 events with very low invariant masses of the electron-positron pair, being most probably radiative decays with internal conversion of theγ-ray. Combining (3) and (4) we obtain for the conversion coefficientρ: in agreement with predictions from electrodynamics.  相似文献   

4.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

5.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

6.
We prove that if the initial condition of the Swift–Hohenberg equation $$\partial _t u(x,t) = (\varepsilon ^2 - (1 + \partial _x^2 )^2 ){\text{ }}u(x,t) - u^3 (x,t)$$ is bounded in modulus by Ce ?βx as x→+∞, the solution cannot propagate to the right with a speed greater than $$\mathop {\sup }\limits_{0 < {\gamma } \leqslant \beta } {\gamma }^{ - 1} (\varepsilon ^2 + 4{\gamma }^2 + 8{\gamma }^4 ).$$ This settles a long-standing conjecture about the possible asymptotic propagation speed of the Swift–Hohenberg equation. The proof does not use the maximum principle and is simple enough to generalize easily to other equations. We illustrate this with an example of a modified Ginzburg–Landau equation, where the critical speed is not determined by the linearization alone.  相似文献   

7.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

8.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

9.
10.
We consider a Kirchhoff network on a random two-dimensional lattice with links and weights as previously specified, and a circular boundary of radiusR. We show rigorously that the resistance between the central point and the boundary, averaged over all placements of the remaining sites with site density ?, is bounded above by $$\begin{array}{*{20}c} {(4\pi )^{ - 1} [\ln (4\pi \rho R^2 ) + 1] + 16[\tan ^{ - 1} 5^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} + 5^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} /(\sqrt 5 + 1)^2 ]} \\ { \simeq (4\pi )^{ - 1} \ln (4\pi \rho R^2 ) + 12.0.} \\ \end{array} $$   相似文献   

11.
Previous works have been made on the improvement of selectivity of ion exchange membranes using adsorption of polyelectrolyte on the surface of the materials. The modification of the surface material in the case of an anion exchange membrane concerns the hydrophilic/hydrophobic balance properties and its relationship with the hydration state. Starting from this goal, the AMX membrane has been modified, in this work, by adsorption of polyethyleneimine on its surface. Many conditions of modification of the AMX membrane surface were studied. A factorial experimental design was used for determining the influent parameters on the AMX membrane modification. The results obtained have shown that the initial concentration of polyethyleneimine and the pH of solution were the main influent parameters on the adsorption of polyethyleneimine on the membrane surface. Competitive ion exchange reactions were studied for the modified and the unmodified membrane involving $ {\text{C}}{{\text{l}}^{ - }} $ , $ {\text{NO}}_3^{ - } $ and $ {\text{SO}}_4^{{2 - }} $ ions. All experiments were carried out at constant concentration of 0.3?mol?L?1 and at 25?°C. Ion exchange isotherms for the binary systems $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{NO}}_3^{ - }} \right) $ , $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{SO}}_4^{{2 - }}} \right) $ and $ \left( {{\text{NO}}_3^{ - }/{\text{SO}}_4^{{2 - }}} \right) $ were studied. The obtained results show that chloride was the most sorbed and the selectivity order both for the modified membrane and the unmodified one is: $ {\text{Cl}} > {\text{NO}}_3^{ - } > {\text{SO}}_4^{{2 - }} $ , under the experimental conditions. Selectivity coefficients $ {\text{K}}_{{{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{NO}}_3^{ - }}} $ , $ {\text{K}}_{{2{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{SO}}_4^{{2 - }}}} $ and $ {\text{K}}_{{2{\text{NO}}_3^{ - }}}^{{{\text{SO}}_4^{{2 - }}}} $ for the three binary systems and for the two membranes were determined. It was also observed that for the modified membrane the selectivity towards sulfate ion decrease and the modified membrane became more selective towards monovalent anions.  相似文献   

12.
We estimate $BR(K \to \pi \nu \bar \nu )$ in the context of the Standard Model by fitting for λ tV tdV ts * of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |? K|, the CP-violating parameter describing K mixing, and a ψ,K , the CP-violating asymmetry in B d 0 J/ψK 0 decays, and obtain the values $\left. {BR(K \to \pi \nu \bar \nu )} \right|_{SM} = (7.07 \pm 1.03) \times 10^{ - 11} $ and $\left. {BR(K_L^0 \to \pi ^0 \nu \bar \nu )} \right|_{SM} = (2.60 \pm 0.52) \times 10^{ - 11} $ . Our estimate is independent of the CKM matrix element V cb and of the ratio of B-mixing frequencies ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ . We also use the constraint estimation of λ t with additional data from $\Delta m_{B_d } $ and |V ub|. This combined analysis slightly increases the precision of the rate estimation of $K^ + \to \pi ^ + \nu \bar \nu $ and $K_L^0 \to \pi ^0 \nu \bar \nu $ (by ?10 and ?20%, respectively). The measured value of $BR(K^ + \to \pi ^ + \nu \bar \nu )$ can be compared both to this estimate and to predictions made from ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ .  相似文献   

13.
Let $\varPhi_{t,\pi}: M_{3}({\mathbb{C}}) \rightarrow M_{3}({\mathbb{C}})$ be a linear map defined by $\varPhi_{t,\pi}(A)=(3-t)\*\sum_{i=1}^{3}E_{ii}AE_{ii}+t\sum_{i=1}^{3}E_{i,\pi (i)}AE_{i,\pi(i)}^{\dag}-A$ , where 0≤t≤3 and π is a permutation of (1,2,3). We show that the Hermitian matrix $W_{\varPhi_{t,\pi}}$ induced by Φ t,π is an optimal entanglement witness if and only if t=1 and π is cyclic.  相似文献   

14.
The formalism of classical r-matrices is used to construct families of compatible Poisson brackets for some nonlinear integrable systems connected with Virasoro algebras. We recover the coupled KdV [1] and Harry Dym [2] systems associated with the auxiliary linear problem 1 $$\sum\limits_{i = 0}^N {\lambda '\left( {a_i \frac{{{\text{d}}^{\text{2}} }}{{{\text{dx}}^2 }} + {\text{u}}_{\text{i}} } \right)} \psi = 0$$ .  相似文献   

15.
16.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

17.
In an experiment performed in the CERN SPS hyperon beam we have obtained a value for the branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to p\pi }}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to p\pi }}^0 of\left( {2.46_{ - 0.35}^{ + 0.30} } \right) \times 10^{ - 3} ,$$ corresponding to a branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to all}}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to all}}of\left( {1.27_{ - 0.18}^{ + 0.16} } \right) \times 10^{ - 3} .$$ This result is discussed in the context of present understanding of hyperon radiative decays.  相似文献   

18.
The charge exchange reaction \(\bar {\mathrm {p}} + \text {Ps} \rightarrow \mathrm {e}^{-} + \bar {\mathrm {H}} \), of interest for the future experiments (GBAR, AEGIS, ATRAP, ...) aiming to produce antihydrogen atoms, is investigated in the energy range between the \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 2)\) and \(\mathrm {e}^{-}+\bar {\mathrm {H}}(n = 3)\) thresholds. An ab-initio method based on the solution of the Faddeev-Merkuriev equations is used. Special focus is put on the impact of the Feshbach resonances and the Gailitis-Damburg oscillations, appearing in the vicinity of the \(\bar {\mathrm {p}} +\text {Ps}(n = 2)\) threshold, on the \(\bar {\mathrm {H}}\) production cross section.  相似文献   

19.
The leading heavy-top two-loop corrections to theZb \(\bar b\) vertex are determined from a direct evaluation of the corresponding Feynman diagrams in the largem t limit. The leading one-loop top-mass effect is enhanced by \([{{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} \mathord{\left/ {\vphantom {{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} {(8\pi ^2 \sqrt 2 )}}} \right. \kern-0em} {(8\pi ^2 \sqrt 2 )}}]\) . Our calculation confirms a recent result of Barbieri et al..  相似文献   

20.
Several new levels including two isomeric states have been established in134Ba. Spin and parity assignments of 10+ and 5? are proposed for the isomers. The former may have a \(\left( {vh_{1 1/2} } \right)_{10^ + } \) configuration while the latter may be either \((vs_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} vh_{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0em} 2}} )_{5 - } \) or \(\left( {vd_{3/2} vh_{1 1/2} } \right)_{5^ - } \) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号