首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphino-substituted sulphur diimide, S(NPtBu2)2, reacts with the trinuclear osmium clusters Os3(CO)11(NCMe) and H2Os3(CO)10 with cleavage of one of the NS bonds to give the cluster compounds Os3(CO)11[PtBu2(NH2)] (I) and HOs3(CO)9[PtBu2N(H)S] (II), respectively. In the solid state, I contains a closed Os3 triangle with the phosphine ligand bonded equatorially to an osmium atom through the phosphorus. In solution intramolecular dynamic processes are observed which are explained by carbonyl migration and pseudoration mechanisms. The osmium cluster II, in the solid state, forms an irregular Os3 triangle which is bridged by a [PtBu2N(H)S] system, and the longest edge of which is bridged by a μ2-hydride. In contrast to I, molecule II is relatively rigid in solution; only pseudorotations are observed as dynamic phenomena.  相似文献   

2.
By reaction of (η-C5H5)W(CO)3SH with Os3(CO)11(NCCH3) the (η5-C5H5)W(CO)3S unit is introduced into the trinuclear osmium cluster through the sulfur atom. The primary reaction product (μ2-H)Os3(CO)102-SW(η5-C5H5)(CO)3] can be converted thermally into the pyramidal Os3SW cluster (η5-C5H5)(CO)11, whose structure was solved by a single crystal X-ray structure analysis. The molecule has a pyramidal Os3SW skeleton with, in a first approximation a planar Os3S basis. Only two of the three OsOs distances are in accordance with chemical bonds.  相似文献   

3.
The 68-electrons, phosphane-substituted, osmium selenido-carbonyl cluster [Os4Se3(CO)10(dppm)] (cluster 3; dppm = bis(diphenylphosphino)methane) has been obtained by reaction under mild experimental conditions between [Os3(CO)12] and the diphosphane diselenide dppmSe2. Its crystal and molecular structure has been elucidated by X-ray diffraction methods. Cluster 3 contains only two Os–Os bonds as suggested by its electron count. It can be described as derived from the open-triangular nido cluster [Os33-Se)2(CO)9] through substitution of one CO ligand by the four-electrons donor osmiaselone fragment [CH2(Ph2P)2](CO)2Os=Se. The replacement of a two-electrons donor carbonyl with a four-electron donor fragment produces the cleavage of one Os–Os bond in the nido cluster. Under the adopted experimental conditions, other products of the reaction between [Os3(CO)12] and dppmSe2 are the clusters [Os33-Se)2(CO)9] (1), [Os33-Se)2(CO)7(μ-dppm)] (2), and [Os33-Se)(CO)8(μ-dppm)] (4), already described in the literature.  相似文献   

4.
Schemes of redox transformations were proposed for osmium carbonylhydride clusters: trinuclear (-H)Os3(-CR = CHR')(CO)1 0 (R = R' = H, Ph; R = H, R' = Ph), (-H)2Os3(3-L)(CO)9 (L = C = CHPh, CHCPh), tetranuclear CpMnOs3 (-CH = CHPh)(-H)(-CO)(CO)1 1, and trinuclear Os3(3-C = CHPh)(CO)9. Two-electron reduction of the trinuclear clusters results in elimination of the unsaturated ligand with preservation of the metal framework.  相似文献   

5.
The reaction of meso-tetra(benzo-15-crown-5)porphyrin (H2TCP) with the osmium carbonyl complex Os3(CO)12 yieds the corresponding osmium(II) porphyrinate OsTCP(CO). The oxidation of OsTCP(CO) with air oxygen and hydrogen peroxide in neutral and acidic media was studied. A preparative method for the synthesis of osmium(VI) meso-tetra(benzo-15-crown-5)porphyrinate (OsO2) TCP by the oxidation of OsTCP(CO) with 50% hydrogen peroxide in acetic acid was developed. The structures of new osmium porphyrinates were determined by IR, 1H NMR, and UV/Vis spectroscopies.  相似文献   

6.
The first examples of bridging tin- and germanium-substituted metallocarboxylate ligands have been obtained from the reactions of Ph3SnOH and Ph3GeOH with Os3(CO)12 under basic conditions. Two products: Os3(CO)10(μ-η2-O=COSnPh3)(μ-OMe), 1 (18% yield) and Os3(CO)10(μ-OMe)(μ-OH), 2 (6.9% yield) were obtained from the reaction of Ph3SnOH with Os3(CO)12 in the presence of [Bu4N]OH in methanol solvent. The compound Os3(CO)10(μ-η2-O=COGePh3)(μ-OMe), 3 (7.3% yield) was prepared similarly by using Ph3GeOH in place of Ph3SnOH. Each of the products 1-3 were characterized structurally by single-crystal X-ray diffraction analysis. Compounds 1 and 3 each contain an μ-η2-O=COMPh3, M = Sn or Ge ligand bridging a pair of osmium atoms in a triosmium carbonyl cluster complex.  相似文献   

7.
Treatment of [Os3(CO)73-S)2(μ-dppm)] (1) with Me3NO in toluene at 80 °C affords the trinuclear cluster [Os3(CO)63-S)2(NMe3)(μ-dppm)] (2) and the hexanuclear cluster [Os6(CO)123-S)4(μ-dppm)2] (3) in 30% and 51% yields, respectively. The reaction of 1 with [Os3(CO)10(MeCN)2] in refluxing benzene at 80 °C gives the hexanuclear cluster [Os6(CO)143-S)2(μ-dppm)] (4) in 15% yield. Compound 2 reacts with CO, PPh3 and P(OMe)3 at room temperature to give 1, [Os3(CO)63-S)2(μ-dppm)(PPh3)] (5) and [Os3(CO)63-S)2(μ-dppm){P(OMe)3}] (6), respectively; in high yields indicating that the NMe3 ligand is weakly bound. Compound 1 reacts with PPh3 in presence of Me3NO to afford 5, 2 and 3 in 53%, 6% and 18% yields, respectively, whereas with P(OMe)31 gives only 6 in 84% yield. Compound 3 reacts with CO at 98 °C to regenerate 1 by the cleavage of the three unsupported osmium-osmium bonds. The molecular structures of 4 and 6 have been unambiguously determined by single crystal X-ray diffraction studies. The hexanuclear compound 3 appears to be a64-electron butterfly core with four triply bridging sulfido ligands and two bridging dppm ligands based on the spectroscopic and analytical data. The metal core of 4 can be described as a central tetrahedral array capped on two faces with two additional osmium atoms. The triply bridging sulfido ligands face cap the two tetrahedral arrays formed by metal capping of the two faces of the central tetrahedron. The dppm ligand bridges one edge of one of the external tetrahedral arrays. Compounds 5 and 6 are formed by the displacement of equatorial carbonyl group of 1 by a PPh3 and P(OMe)3 ligand respectively and their structures are comparable to that of 1.  相似文献   

8.
Reactions of the alkyne cluster Os3(μ-CO)(CO)93-Me3C2Me) with alkynes Me3SiC≡CR (R=Me, Bun) in refluxing hexane result in the formation of clusters Os3(CO)93-C(SiMe3)=C(Me)C=C(SiMe3)=C(Me)C=C(SiMe3)R} (2a: R=Me;3a: R=Bun). The dienediyl ligand in these complexes is formed by alkyne-vinylidene coupling, with vinylidene generated in the course of reaction from the alkyne molecule by the acetylene-vinylidene rearrangement involving a 1,2-shift of the Me3Si group. The structure of cluster3a was determined by X-ray structural analysis. The dienediyl ligand is coordinated to three metal atoms of the cluster framework by two π-ethylene bonds with two osmium atoms and two σ-bonds with the third osmium atom with the formation of the osmacyclobutene moiety. The1H and13C NMR study of13CO-enriched samples of clusters2a and3a revealed the stereochemical nonrigidity of these molecules due to the exchange of the hydrocarbon and carbonyl ligands.  相似文献   

9.
The readily prepared [Re2(CO)6(μ-S2NC7H4)2] (1) reacts with Group 8 trimetallic carbonyl clusters to yield new mixed-metal tri- and tetranuclear clusters. With [Os3(CO)10(NCMe)2] at 80 °C the tetranuclear mixed-metal cluster [Os3Re(CO)133-C7H4NS2)] (2) is the only isolated product. With Ru3(CO)12 products are dependent upon the reaction temperature. At 80 °C, a mixture of tetranuclear mixed-metal [Ru3Re(CO)133-C7H4NS2)] (5) and the triruthenium complex [Ru3(CO)9(μ-H)(μ3-C7H4NS2)] (4) results, while at 110 °C a second tetranuclear mixed-metal cluster, [Re2Ru2(CO)124-S)(μ-C7H4NS)(μ-C7H4NS2)] (3), resulting from carbon-sulfur bond scission, is the major product. Reaction of 1 With Fe3(CO)12 at 80 °C furnishes the trinuclear mixed-metal cluster [Fe2Re(CO)8(μ-CO)23-C7H4NS2)] (6). The reactivity of 6 has been probed with the aim of identifying any metal-based selectivity for carbonyl substitution. Addition of PPh3 in presence of Me3NO at 25 °C gives both the mono- and bis(phosphine)-substituted derivatives [Os3Re(CO)12(PPh3)(μ3-C7H4NS2)] (7) and [Os3Re(CO)11(PPh3)23-C7H4NS2)] (8). In 7 the PPh3 ligand occupies an axial site on wingtip osmium, while in 8 one PPh3 ligand is equatorially coordinated to wingtip osmium and the other is bonded to a hinge osmium. New complexes have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies.  相似文献   

10.
A number of tri- and hexaosmium carbonyl cluster derivatives were screened for cytotoxicity against five cancer cell lines, and the hexaosmium carbonyl clusters Os6(CO)18 and Os6(CO)16(NCCH3)2 were found to be active against four of these, viz., ER+ breast carcinoma (MCF-7), ER-breast carcinoma (MDA-MB-231), metastatic colorectal adenocarcinoma (SW620) and hepatocarcinoma (Hepg2), with IC50 values as low as 6 μM. Studies on their mode of action with the MDA-MB-231 cell line pointed to the induction of apoptosis, as has been found earlier for the trinuclear cluster Os3(CO)10(NCCH3)2.  相似文献   

11.
The trinuclear osmium carbonyl cluster, [Os3(CO)10(MeCN)2], is allowed to react with 1 equiv. of [IrCp1Cl2]2 (Cp1 = pentamethylcyclopentadiene) in refluxing dichloromethane to give two new osmium–iridium mixed-metal clusters, [Os3Ir2(Cp1)2(μ-OH)(μ-CO)2(CO)8Cl] (1) and [Os3IrCp1(μ-OH)(CO)10Cl] (2), in moderate yields. In the presence of a pyridyl ligand, [C5H3N(NH2)Br], however, the products isolated are different. Two osmium–iridium clusters with different coordination modes of the pyridyl ligand are afforded, [Os3IrCp1(μ-H)(μ-Cl)(η33-C5H2N(NH2)Br)(CO)9] (3) and [Os3IrCp1(μ-Cl)223-C5H3N(NH)Br)(CO)7] (4). All of the new compounds are characterized by conventional spectroscopic methods, and their structures are determined by single-crystal X-ray diffraction analysis.  相似文献   

12.
A neutral triosmium alkylidyne carbonyl cluster containing the 4-vinylpyridine (4vpy) moiety [Os3(µ-H)2(CO)93-CNC5H4-CH=CH2)] (1) has been prepared as red crystalline solids in good yield. Monomer (1) was copolymerized with styrene in the presence of ,'-azobis(isobutyronitrile) (AIBN) in chloroform at 60°C and a polymer-immobilized alkylidyne cluster of osmium was obtained. To compare the spectroscopic properties with the copolymers, a structurally similar repeating unit of the copolymers, [Os3(µ-H)2(CO)9(µ-3-CNC5H4-CH2CH3)I](2), has also been synthesized and characterized.  相似文献   

13.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

14.
Thermal reaction of [Ru3(CO)12] with PH2Mes (Mes = mesityl) in refluxing toluene afforded mesitylphosphinidene-capped ruthenium carbonyl clusters, [Ru3(CO)9(μ-H)23-PMes)] (1), [Ru3(CO)8(PH2Mes)(μ-H)23-PMes)] (2), [Ru3(CO)93-PMes)2] (3), [Ru4(CO)10(μ-CO)(μ4-PMes)2] (4), and [Ru5(CO)10H24-PMes)(μ3-PMes)2] (5). All products were fully characterized and structurally confirmed by X-ray crystal structure analysis. Complexes 2-4 were also obtained in high yields by stepwise reaction starting from 1. Fluxional behavior of carbonyl groups was observed in case of 4. Complex 5 reveals a new type of skeletal structure, bicapped-octahedron having μ3- and μ4-phosphinidene ligands at the capping positions. Similar reaction of [Os3(CO)12] with PH2Mes yielded a phosphido-bridged osmium cluster [Os3(CO)10(μ-H)(μ-PHMes)] (6) and a phosphinidene-capped cluster [Os3(CO)9(μ-H)23-PMes)] (7).  相似文献   

15.
The mass spectra of the following acetylenic derivatives of iron, ruthenium and osmium carbonyls are reported: the iron compounds Fe2(CO)6[C2(C6H5)s2]2, Fe2(CO)6[C2(CH3)2]2 and Fe2(CO)6[C2(C2H5)2]2, the ruthenium compounds Ru2(CO)6[C2(C6H5)2]2, and Ru2(CO)6[C2(CH3)2]2 and the osmium compounds Os2(CO)6[C2(C6H5)2]2, Os2(CO)6[C2HC6H5]2 and Os2(CO)6[C2(CH3)2]2. Iron compounds exhibit breakdown schemes where binuclear, mononuclear and hydrocarbon ions are present. On the other hand, ruthenium and osmium compounds fragment in a similar way and give rise to singly and doubly charged binuclear ions. Phenylic derivatives of ruthenium and osmium also give weak triply charged ions. The results are discussed in terms of relative strengths of the metal-metal and metal-carbon bonds.  相似文献   

16.
The binuclear osmium complex Os3S7SeCl8 was prepared by the reaction of cluster chalcogen chloride K6Os2S2O6(CN)8 with an aqueous KCN solution. In the complex, the distance between the osmium atoms is 2.85 Å, and they are linked by μ-SO 2 2? bridges with the OsSOs angle of 75.9°. The osmium coordination number is 6. In the reaction with CN? ligands under study, the individual fragments of the structure are retained; however, the trinuclear cluster skeleton of Os3S7SeCl8 is destroyed.  相似文献   

17.
Reaction of Os3(CO)10(NCMe)2 and 1,5-cyclooctadiene (C8H12) affords the diene complex Os3(CO)104-C8H12) (1) with the two alkene moieties coordinated to an equatorial and an axial positions of one osmium atom. Thermolysis of 1 in refluxing n-hexane results in a vinylic C-H bond activation to form (μ-H)Os3(CO)9(μ,η4-C8H11) (2) in good isolated yield. The crystal structures of 1 and 2 have been established by an X-ray diffraction study.  相似文献   

18.
The reduction of Os3(CO)12 by NaBH4 in tetrahydrofuran has been studied, and the formation of the anionic clusters [HOs3(CO)11]?, [H3Os4(CO)12]? and [H2Os4(CO)12]2? observed. The previously unreported dianion [H2Os4(CO)12]2? was prepared in satisfactory yield, and characterised as the bis(triphenylphosphine)iminium salt. This compound crystallizes in the space group P1, with Z = 1, and cell dimensions of a 11.014(2), b 14.751(3), c 15.168(3) Å, α 123.95(2)°, β 95.77(2)°, γ 98.73(2)°. The structure was solved by a combination of multisolution sign expansion and Fourier methods, and final residuals were R 0.067 and RW 0.066 for 5972 observed intensity data. The dianion comprises a distorted tetrahedron of osmium atoms, each metal also bonding to three terminal carbonyl ligands, which as staggered with respect to the metalmetal bonds. Unlike the cation, the cluster anion is statistically disordered between two centrosymmetrically related sites.  相似文献   

19.
The reaction of the cluster Os3(CO)10(μ-H)(μ-γ-C5H3O2) (1) with a number of alkynes under thermal or visible light irradiation conditions, afforded in most cases the dinuclear complexes Os2(CO)6(μ-γ-C5H3O2)(μ-LH) (L=PhCCPh, tBuCCH, tBuCCMe or EtCCEt) (2) or the trinuclear chain complexes Os3(CO)9(μ-H)(μ-γ-C5H3O2)(μ-RCCHC6H4) (R=H, Ph) (3). In the case of PhCCPh, a new isomer of Os3(CO)8(PhCCPh)2, viz., Os3(CO)8(μ-PhCCPh)(μ-PhCCHC6H4) (7) has been isolated and characterised.  相似文献   

20.
A Cyclic Arsino Sulfur Diimide as an Intramolecular Bridging Ligand: Synthesis and X-Ray Structure Analysis of Os3(CO)10[μ-(t-Bu)As(NSN)2As(t-Bu)] The eight-membered sulfur diimide heterocycle (t-Bu)As(NSN)2As(t-Bu) ( 8 ) can be incorporated into a trinuclear carbonylosmium cluster either as a mono- or as a bidentate ligand. Reaction of the kinetically labile acetonitrile complex Os3(CO)11(CH3CN) with 8 in CH2Cl2 solution leads to a monosubstituted derivative of Os3(CO)12 of composition Os3(CO)11[(t-Bu)As(NSN)2As(t-Bu)] ( 9 ) which still contains one uncoordinated arsenic atom; addition of a second [Os3(CO)11] fragment to 9 was not observed. However, Me3NO-induced substitution of a carbonyl group in 9 results in coordination of the ligand 8 to the triosmium cluster through both arsenic atoms. The structure of the product Os3(CO)10[μ-(t-Bu)As(NSN)2As(t-Bu)](10)1 was determined by an X-ray structure analysis. I n the triangulo-triosmiumcarbonyl cluster 10 , the ligand 8 occupies two equatorial positions at two adjacent osmium atoms, being coordinated through the arsenic atoms with O s ? As distances of 2.403(1) Å The cluster molecule 10 possesses a 2-symmetry of crystallographic origin. The [Os3(CO)10] fragment and the eight-membered heterocyclic ligand are not changed significantly in their structures as compared with Os3(CO)10 and free 8 , respectively. Nevertheless, coordination of 8 imposes its lower 2-symmetry upon the [Os3(CO)10] fragment. The reduction of mm2- to 2-symmetry (C2v to C2) for the cyclic arsino sulfur diimide 8 is more pronounced in the complex 10 than in the free state. The As …? As distance in 10 (8.878(4) A) is considerably enlarged its compared to 8 (3.683(1) Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号