首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures of FeO 4 2? , RuO4, RuO 4 ? , RuO 4 2? and OsO4 have been investigated using the Hartree-Fock-Slater Discrete Variational Method. The calculated ordering of the valence orbitals is 2t 2, 1e, 2a 1, 3t 2 andt 1 with thet 1 orbital as the highest occupied. The first five charge transfer bands are assigned as:t 1→2e(v 1), 3t 2→2e(v 2),t 1→4t 2(v 3), 3t 2→4t 2(v 4) and 2a 1→4t 2(v 5). It is suggested that ad-d transition should be observed at 1.5 eV in RuO 4 ? and RuO 4 2? .  相似文献   

2.
Nuclear magnetic resonance (NMR) spectra and the spin-lattice relaxation times (T1) for the M nuclei (M = K, Cs, and NH4) in M2CuCl4 crystals were studied as functions of temperature. The K2CuCl4, Cs2CuCl4, and (NH4)2CuCl4 single crystals all have the same M2BX4 structure, and their two inequivalent sites M(1) and M(2) were differentiated using the NMR results. Because M(2) is surrounded by fewer but closer Cl ligands than M(1), it has a shorter T1 value than M(1). However, the three crystals have different T1 temperature dependences and dynamic properties. The rotational tumbling motion defined by the Bloembergen-Purcell-Pound theory was found to occur in (NH4)2CuCl4, but not in K2CuCl4 or Cs2CuCl4. The differences observed in the spin-lattice relaxation times of the M nuclei may be related to their ionic masses.  相似文献   

3.
Two ranges of solid solutions were prepared in the system Li4SiO4Li3VO4: Li4?xSi1?xVxO4, 0 < x ? 0.37 with the Li4SiO4 structure and Li3+yV1?ySiyO4, 0.18 ? y ? 0.53 with a γ structure. The conductivity of both solid solutions is much higher than that of the end members and passes through a maximum at ~40Li4SiO4 · 60Li3VO4 with values of ~1 × 10?5 ohm?1 cm?1 at 20°C, rising to ~4 × 10?2 ohm?1 cm?1 at 300°C. These conductivities are several times higher than in the corresponding Li4SiO4Li3(P,As)O4 systems, especially at room temperature. The solid solutions are easy to prepare, are stable in air, and maintain their conductivity with time. The mechanism of conduction is discussed in terms of the random-walk equation for conductivity and the significance of the term c(1 ? c) in the preexponential factor is assessed. Data for the three systems Li4SiO4Li3YO4 (Y = P, As. V) are compared.  相似文献   

4.
The subsolidus region of the Ag2MoO4-MgMoO4-In2(MoO4)3 ternary salt system has been studied by X-ray powder diffraction. The formation of new compounds Ag1 ? x Mg1 ? x In1 + x (MoO4)3 (0 ≤ x ≤ 0.6) and AgMg3In(MoO4)5 has been established. The unit cell parameters of solid-solution samples have been determined. The Ag1 ? x Mg1 ? x In1 + x (MoO4)3 phase of variable composition has a NASICON-type structure (space group R $ \bar 3 $ c) AgMg3In(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P $ \bar 1 $ , Z = 2) with the following unit cell parameters: a = 7.0374(5) Å, b = 17.932(1) Å, c = 6.9822(4) Å, α = 87.309(6)°, β = 100.832(6)°, γ = 92.358(6)°. The compounds Ag1 ? x Mg1 ? x In1 + x (MoO4)3 and AgMg3In(MoO4)5 are thermally stable up to 960 and 1030°C, respectively.  相似文献   

5.
Nine novel sulfate-type hybrid surfactants, CmF2m+1C6H4CH(OSO3Na)CnH2n+1 (FmPHnOS: m=4, 6, 8; n=3, 5, 7; C6H4: p-phenylene), with a benzene ring in their molecules were synthesized. Alkanoyl chlorides were allowed to react with iodobenzene in the presence of aluminum chloride to give the corresponding aromatic ketones. The reaction of the ketones with perfluoroalkyl iodides yielded 1-[4-(perfluoroalkyl)phenyl]-1-alkanones as intermediates. The intermediates were allowed to react with methanol in tetrahydrofuran in the presence of sodium borohydride to yield 1-[4-(perfluoroalkyl)phenyl]-1-alkanols. The desired hybrid surfactants were obtained by the reaction of 1-[4-(perfluoroalkyl)phenyl-1-alkanols with sulfur trioxide/pyridine complex in pyridine and by the subsequent neutralization of the products with sodium hydroxide solution. When compared with the conventional hybrid surfactants, CmF2m+1C6H4COCH(SO3Na)CnH2n+1 (FmHnS: m=4, 6; n=2, 4, 6; C6H4: p-phenylene), the new hybrid surfactants thus synthesized were found to have a comparable ability to lower the surface tension of water and a high hydrophilicity. The cmc of FmPHnOS obeyed Kleven’s rule and their occupied areas per molecule increased with increasing m and n with the values between 0.66 and 1.05 nm2. The aggregation number for FmPHnOS micelles ranged from 6 to 45 and the hydrodynamic radius of the micelles was in the range of 1.4-3.1 nm.  相似文献   

6.
Luminescence from [(NH4(18-Crown-6))4MnBr4][TlBr4]2 (1), [(NH4(18-Crown-6))4MnCl4][TlCl4]2 (2), [(NH4(18-Crown-6))2MnBr4] (3), and [(NH4(18-Crown-6))2MnCl4] (4) was studied in search of new insights regarding crystal defects in 2. Emission from 3 and 4 is normal Mn2+(4T1(4G)→6A1); that of 2 (λmax≈520 nm at ca. 300 K and 560 nm at 77 K) is unusual and temperature dependent. Thermal barriers (kJ/mol, assignment): green emission of 1 and 2, T<150 K (1-2, NH+4 rotations), 150<T<250 K (7-14, energy migration among [MnX4]2−), 250<T<300 K (26-35, rotations of 18-Crown-6)); yellow emission of 2: T;<250 K (7-8, energy migration among [MnX4]2−), T>250 K (29 kJ/mol, defect-to-Mn2+(4T1(4G)) back energy transfer). Crystal data for 4: Space group P21/c; Z=4; a=20.173(1) Å; b=9.0144(8) Å; c=20.821(1) Å; β=98.782(5)°; V=3741.9(8) Å3; Rw=0.059; R=0.054.  相似文献   

7.
The new lithium ionic conductors, thio-LISICON (LIthium SuperIonic CONductor), were found in the ternary Li2S-SiS2-Al2S3 and Li2S-SiS2-P2S5 systems. Their structures of new materials, Li4+xSi1−xAlxS4 and Li4−xSi1−xPxS4 were determined by X-ray Rietveld analysis, and the electric and electrochemical properties were studied by electronic conductivity, ac conductivity and cyclic voltammogram measurements. The structure of the host material, Li4SiS4 is related to the γ-Li3PO4-type structure, and when the Li+ interstitials or Li+ vacancies were created by the partial substitutions of Al3+ or P5+ for Si4+, large increases in conductivity occur. The solid solution member x=0.6 in Li4−xSi1−xPxS4 showed high conductivity of 6.4×10-4 S cm−1 at 27°C with negligible electronic conductivity. The new solid solution, Li4−xSi1−xPxS4, also has high electrochemical stability up to ∼5 V vs Li at room temperature. All-solid-state lithium cells were investigated using the Li3.4Si0.4P0.6S4 electrolyte, LiCoO2 cathode and In anode.  相似文献   

8.
Seven new uranyl vanadates with mono-protonated amine or tetramethylammonium used as structure directing cations, (C2NH8)2{[(UO2)(H2O)][(UO2)(VO4)]4}·H2O (DMetU5V4) (C2NH8){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (DMetU4V3), (C5NH6)2{[(UO2)(H2O)][(UO2)(VO4)]4}·H2O (PyrU5V4), (C3NH10){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (isoPrU4V3), (N(CH3)4){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (TMetU4V3), (C6NH14){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (CHexU4V3), and (C4NH12){[(UO2)(H2O)][(UO2)(VO4)]3} (TButU4V3) were prepared from mild-hydrothermal reactions using dimethylamine, pyridine, isopropylamine, tetramethylammonium hydroxide, cyclohexylamine and tertiobutylamine, respectively, with uranyl nitrate and vanadium oxide in acidic medium. The structures were solved using single-crystal X-ray diffraction data. The compounds exhibit three-dimensional uranyl-vanadate inorganic frameworks built from uranophane-type uranyl-vanadate layers pillared by uranyl polyhedra with cavities in between occupied by protonated organic moieties. In the uranyl-vanadate layers the orientations of the vanadate tetrahedra give new geometrical isomers leading to unprecedented pillared systems and new inorganic frameworks with U/V=4/3. Crystallographic data: (DMetU5V4) orthorhombic, Cmc21 space group, a=15.6276(4), b=14.1341(4), c=13.6040(4) Å; (DMetU4V3) monoclinic, P21/n space group, a=10.2312(4), b=13.5661(7), c=17.5291(7) Å, β=96.966(2); (PyrU5V4), triclinic, P1 space group, a=9.6981(3), b=9.9966(2), c=10.5523(2) Å, α=117.194(1), β=113.551(1), γ=92.216(1)°; (isoPrU4V3) monoclinic, P21/n space group, a=10.3507(1), b=13.6500(2), c=17.3035(2) Å, β=97.551(1)°; (TMetU4V3) orthorhombic, Pbca space group, a=17.1819(2), b=13.6931(1), c=21.4826(2) Å; (CHexU4V3), triclinic P−1 space group, a=9.8273(6), b=11.0294(7), c=12.7506(8) Å, α=98.461(3), β=96.437(3), γ=105.955(3)°; (TButU4V3), monoclinic, P21/m space group, a=9.8048(4), b=17.4567(8), c=15.4820(6) Å, β=106.103(2).  相似文献   

9.
A deuterated n=1 Ruddlesden-Popper compound, DLnTiO4 (HLnTiO4, Ln=La, Nd and Y), was prepared by an ion-exchange reaction of Na+ ions in NaLnTiO4 with D+ ions, and its structure was analyzed by Rietveld method using powder neutron diffraction data. The structure analyses showed that DLaTiO4 and DNdTiO4 crystallized in the space group P4/nmm with a=3.7232(1) and c=12.3088(1) Å, and a=3.7039(1) and c=12.0883(1) Å, respectively. On the other hand, DYTiO4 crystallized in the space group P21/c with a=11.460(1), b=5.2920(4), c=5.3628(5) Å and β=90.441(9)°. The loaded protons were found to statistically occupy the sites around an apical oxygen of TiO6 octahedron in the interlayer of these compounds, rather than Na atom sites in NaLnTiO4.  相似文献   

10.
The alkali sodium ferrate (IV) Na4FeO4 has been prepared by solid-state reaction of sodium peroxide Na2O2 and wustite Fe1−xO, in a molar ratio Na/Fe=4, at 400°C under vacuum. Powder X-ray and neutron diffraction studies indicate that Na4FeO4 crystallizes in the triclinic system P−1 with the cell parameters= a=8.4810(2) Å, b=5.7688(1) Å, c=6.5622(1) Å, α=124.662(2)°, β=98.848(2)°, γ=101.761(2)° and Z=2. Na4FeO4 is isotypic with the other known phases Na4MO4 (M=Ti, Cr, Mn, Co and Ge, Sn, Pb). The solid solution Na4FexCo1−xO4 exists for x=0-1 and we have followed the evolution of the cell parameters with x to determine the lattice parameters of the triclinic cell of Na4FeO4. A three-dimensional network of isolated FeO4 tetrahedra connected by Na atoms characterizes the structure. This compound is antiferromagnetic below TN=16 K. At 2 K the magnetic cell is twice the nuclear cell and the magnetic structure is collinear (μFe=3.36(12) μB at 2 K). This black compound is highly hygroscopic. In water or on contact with the atmospheric moisture it is disproportionated in Fe3+ and Fe6+. The Mössbauer spectra of Na4FeO4 are fitted with one doublet (δ=− 0.22 mm/s, Δ=0.41 mm/s at 295 K) in the paramagnetic state and with a sextet at 8K. These parameters characterize Fe4+ high-spin in tetrahedral FeO4 coordination.  相似文献   

11.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

12.
The crystal structure of KInMe4 and CsInMe4 have been determined from single crystal diffractometer data. Lattice parameters of RbInMe4 obtained by powder methods are given. KInMe4 and RbInMe4 are isostructural (space group I41/amd), containing four formula units in the unit cell. CsInMe4 belongs to space group P4? 2m with one formula unit per unit cell. Lattice parameters in Å: KInMe4:a=9.904(2), c=8.132(2); RbInMe4:a=10.208(2), c=8.146(2); CsInMe4:a=7.459(1), c=4.163(1). All compounds consist of isolated alkali cations and tetrahedral InMe4-anions. InC distances are 2.239(3) in KInMe4 and 2.26(2) in CsInMe4. The appearance of three different structure types of alkali metal tetramethyl indates is explained by the increasing alkali ion radii.  相似文献   

13.
Three new silver indium double phosphates Ag3In(PO4)2 (I), β-(II) and α-Ag3In2(PO4)3 (III) were synthesized by solid state method (I and II—700 °C, III—900 °C). Compounds I and II crystallize into a monoclinic system (I—sp. gr. C2/m, Z=2, a=8.7037(1)Å, b=5.4884(1)Å, c=7.3404(1)Å, β=93.897(1)°; II—sp. gr. C2/c, Z=4, a=12.6305(1)Å, b=12.8549(1)Å, c=6.5989(1)Å, β=113.842(1)°), and compound III crystallize into a hexagonal system (sp. gr. R-3c, Z=6, a=8.9943(1)Å, c=22.7134(1)Å). Their crystal structures were determined by the Rietveld analysis (I—Rp=6.47, Rwp=8.54; II—Rp=5.67, Rwp=6.40; III—Rp=7.30, Rwp=9.91). Structure of Ag3In(PO4)2 is related to the sodium chromate structure type and is isotypic to α-Na3In(PO4)2. The polymorphous modifications of β- and α-Ag3In2(PO4)3 are isostructural to sodium analogs (β- and α-Na3In2(PO4)3) and are related to alluaudite (II) and NASICON (III) structure types. Compounds I and II are not stable at temperature above 850 °C. Ag3In(PO4)2 is decomposed providing silver orthophosphate Ag3PO4 and α-Ag3In2(PO4)2. β-Ag3In2(PO4)3 is transformed to α-Ag3In2(PO4)3.  相似文献   

14.
New 4234-type compounds, structurally related to the n=4 member of the (LnC)nNi2B2 homologous series of intermetallic borocarbides, were synthesized by arc-melting. Here we report that this structure type, previously observed only for Ni-based compounds, can be synthesized for a large number of transition elements. Further, we find it to be stable for medium through small lanthanides. The compounds have formulas Y4T2B3C4 [T=Fe, Co, Ni, Ru, Rh, and Ir], Ln4T2B3C4 [Ln=Er, Dy, and Gd; T=Fe and Co], Lu4Ni2B3C4, and Sc4Ni2B3C4. The unit cells are pseudo-tetragonal, with lattice parameters ranging from a=3.348(1) Å, c=25.90(1) Å for Sc4Ni2B3C4 to a=3.624(1) Å, c=26.63(1) Å for Y4Rh2B3C4. Structural investigation by exit-wave reconstruction is reported, showing the presence of twinning on the unit cell scale. The phases show either Curie- Weiss behavior with very small magnetic moments per transition metal atom or temperature-independent paramagnetism.  相似文献   

15.
The (1?x)CsHSO4-xKH2PO4 system was studied in a wide range of compositions (x = 0.05?0.97). Mixed salts with different crystal structures and different transport, thermodynamic, and thermal properties were shown to form. In these mixed (1?x)CsHSO4-xKH2PO4 compounds (x = 0.05?0.5), solid solutions formed on the basis of the compound with a crystal structure Cs3(HSO4)2(H2PO4) (C2/c). As the content of KH2PO4 increased further, another compound with a crystal structure, CsH5(PO4)2 (P21/c), formed and existed up to x = 0.95. At x ≥ 0.7, KH2PO4 existed as an individual phase along with CsH5(PO4)2; its content increased considerably at x ≥ 0.9. The low conductivities and high activation energies of (1?x)CsHSO4-xKH2PO4 at x = 0.6?0.95 were close to those for CsH5(PO4)2. The compounds with x = 0.5–0.9 showed low thermal stability corresponding to the individual CsH5(PO4)2 phase.  相似文献   

16.
Two homeotypic hydrated uranyl arsenates, (UO2)[(UO2)(AsO4)]2(H2O)4, UAs4, and (UO2)[(UO2)(AsO4)]2(H2O)5, UAs5 were synthesized by hydrothermal methods. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. Their crystal structures were solved by direct methods and refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (UAs4, UAs5) wR2=0.116, 0.060, for all data, and R1=0.046, 0.033, calculated for 3176, 5306 unique observed reflections (|Fo|>4σF) respectively. UAs4 is monoclinic, space group P21/c, Z=4, a=11.238(1), b=7.152(1), c=21.941(2)Å, β=104.576(2)°, V=1706.8(1)Å3, Dcalc=4.51 g/cm3. UAs5 is orthorhombic, space group Pca21, Z=4, a=20.133(2), b=11.695(1), c=7.154(1)Å, V=1684.4(1)Å3, Dcalc=4.65 g/cm3. Both structures contain sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(AsO4)]1− and the uranophane sheet anion-topology. The sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with an arsenate tetrahedron on each of two adjacent sheets, resulting in open-frameworks with isolated H2O groups in the larger cavities of the structures. The uranyl arsenate sheet in UAs4 is relatively planar, and is topologically identical with the uranyl phosphate sheet in (UO2)[(UO2)(PO4)]2(H2O)4. The uranyl arsenate sheet in UAs5 is the same geometrical isomer as in UAs4, but is highly corrugated, exhibiting approximately right angle bends of the sheet after every second uranyl arsenate chain repeat.  相似文献   

17.
The cation distribution among the two crystallographic cation sites of the Cr3S4 structure was determined in VTi2Se4 and VCr2Se4 by high-resolution neutron diffraction, using Rietveld analysis. The results showed a considerable disorder but they nevertheless revealed the site preference of V atoms for the 2(a) site in both compounds. The compositional changes of the lattice parameters and the transition temperatures to the CdI2-type structure in (VxTi1−x)3Se4 and (CrxV1−x)3Se4 were compared with those in (CrxTi1−x)3Se4 and (FexCr1−x)3Se4, and discussed from the viewpoint of the site preference of the cation.  相似文献   

18.
A series of MVO(SO4)2 vanadium complexes, where M = Rb, Cs, or Tl, were prepared, and their crystal structures and physicochemical properties studied. The rubidium and thallium compounds of this series were found to be isostructural to each other and to crystallize, like KVO(SO4)2 and NH4VO(SO4)2, in orthorhombic system (space group P212121, No. 19, Z = 4) with the unit cell parameters a = 4.9735(2) Å, b=8.7894(4) Å, c = 16.6968(8) Å, V = 729.88 Å3 (Rb); and a = 4.9636(1) Å, b = 8.7399(2) Å, c = 16.8598(4) Å, V = 731.39 Å3 (Tl). The cesium compound was found to crystallize in monoclinic system (space group P21/a, No. 14-2, Z = 4): a = 10.0968(6) Å, b = 8.9131(4) Å, c = 9.8675(5) Å, β = 114.640(2)°, V = 807.16 Å3. The MVO(SO4)2 crystal structure is built of VO6 octahedra, which are linked into layers by bridging SO4 groups. At the apex of each VO6 octahedron, there is a short V-O terminal bond having a length of 1.54(1) Å (Rb), 1.57(2) Å (Tl), and 1.52(4) Å (Cs).  相似文献   

19.
Complex phosphates CsMg1 ? x M x PO4 (M = Mn, Co, Cu, Zn), containing cesium and metals in the oxidation state +2, have been synthesized, and their structure and thermal behavior have been studied. Continuous solid solutions (0 ?? x ?? 1) of the ??-tridymite structure type are formed in the CsMg1 ? x Mn x PO4, CsMg1 ? x Co x PO4, and CsMg1 ? x Zn x PO4 systems, whereas limited solid solutions (0 ?? x ?? 0.4) are formed in the CsMg1 ? x Cu x PO4 system. Based on DTA data, phase transitions have been revealed in the cobalt-, copper-, and zinc-containing phosphates, and the orthorhombic or monoclinic crystal system has been identified. Unit cell parameters of the solid solutions have been calculated. Thermal expansion of the CsMPO4 phosphates has been studied.  相似文献   

20.
The electronic structures of MnO?4, MnO2?4, MnO3?4, CrO2?4, CrO3?4, VO3?4, RuO4, RuO?4, RuO2?4, TcO?4 and MoO2?4 have been investigated using the Hartree-Fock-Slater Discrete Variational Method. The calculated ordering of the valence orbitals of all the comlexes is: t1, 4t2, 3a1, 1c, 3t2, with t1 the orbital of highest energy. The calculated single transition energies are in good agreement with experimental values and indicate the uniform assignment: t1 → 2e(v1), 4t2 → 2e(v2). t1 → 5t2(v3), and 4t2 → 5t2(v4). A/D values, calculated from the theory of magnetic circular dichroism (MDC) also support this assignment.Population analyses reveal that all complexes, whether d0, d1 or d2, have d-orbital populations close to those of the corresponding M2+ ions in which two electrons have been removed from the (n + 1)s orbital of M. This is also true of the excited states, such as t1 → 2e and 4t2 → 2e, where a transfer of charge from the ligands to the metal has previously been assumed. It is shown that, instead of a transfer of charge from ligands to metal, electronic excitation consists of a rearrangement of electron density both at the ligands and at the metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号