首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
本文以三苯胺为原料,通过化学氧化法制备了具有电压敏感性的聚三苯胺(PTPAn)并将其成功应用到锂硫电池隔膜上。电导率测试结果表明,PTPAn/聚丙烯(PP)隔膜的离子电导率达1.56 mS·cm-1;循环伏安(CV)测试结果表明,PTPAn/PP隔膜在3.5–4.2 V内具有氧化还原峰。在0.1C倍率下,采用PTPAn/PP隔膜和空白PP隔膜的锂硫电池在经200周循环后,放电比容量分别为424.8和407.2 mAh·g-1,库伦效率分别为99.38%和98.59%,倍率测试表明(0.1C、0.2C、0.5C、1C),采用PTPAn/PP隔膜的锂硫电池在不同倍率下放电比容量均高于采用空白PP隔膜的锂硫电池。与此同时,对采用PTPAn/PP隔膜的锂硫电池进行过充实验,在第4周过充时,充电比容量为843.1 mAh·g-1,放电比容量为839.8 mAh·g-1;第10周过充时,充电比容量为690.2 mAh·g-1,放电比容量为669.2 mAh·g-1。第16周过充时,电池的充电比容量为538.7 mAh·g-1,放电比容量为512.9 mAh·g-1。倍率过充测试表明,经过不同倍率过充实验后,采用PTPAn/PP隔膜的锂硫电池仍能正常工作,在1C倍率下过充,电池电压稳定保持在3.9 V,充电比容量为349.8 mAh·g-1,放电比容量为328.7 mAh·g-1。  相似文献   

2.
我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能。我们发现,在不添加乙炔黑(AB)的情况下,G/SG复合材料表现出较高的首次库伦效率,很好的循环稳定性和高倍率性能。当石墨烯包覆量为1%时,材料50次循环后的可逆容量可与添加10%AB的天然石墨电极(SG)等同;当石墨烯包覆量为2.5%时,材料的比容量完全高于添加10%AB的石墨电极。材料电化学性能的改善归因于石墨烯的包覆。一方面,石墨烯的柔软可变性可以保证天然石墨颗粒在充放电过程中的结构完整性,从而有效改善材料的循环稳定性;另一方面,石墨烯的存在提高了电极的导电性,促进更好导电网络的形成。因此,石墨烯包覆天然球形石墨材料中,石墨烯不仅是活性物质,也发挥导电剂的作用。当添加5%的乙炔黑时,在50 mA·g-1电流循环50次后,5%G/SG电极的可逆容量从381.1 mAh·g-1提高到404.5 mAh·g-1,在1 A·g-1电流时可逆容量从82.5 mAh·g-1提高到101.9 mAh·g-1,这表明G/SG电极仍然需要乙炔黑导电剂。乙炔黑颗粒填充在复合材料的空隙中,通过点接触的形式连接到G/SG颗粒,与石墨烯协同作用形成了更加有效的导电网络。尽管石墨烯包覆和乙炔黑添加对天然石墨电极具有积极的影响,例如增加了天然石墨电极的导电性和储锂性能(包括可逆容量,倍率性能和循环性能),但随着石墨烯或乙炔黑的增加,电极密度通常会降低。因此,在实际应用中应考虑石墨负极材料的质量和体积容量的平衡。这些结果对天然石墨的进一步商业应用具有重要意义。我们的工作为天然石墨电极在锂电池中的电化学行为提供了一种新的认识,并且有助于制备更高性能的负极材料。  相似文献   

3.
发展了基于超分子化学的新方法实现了对石墨炔的原位氮掺杂,通过利用石墨炔与有机共轭分子间强的ππ作用,原位制备了石墨炔/卟吩复合材料薄膜,并用作锂离子电池的负极材料,其比容量增加到了1000 mAh∙g−1,该复合材料表现出优良的倍率性能和循环稳定性,为可控制备掺氮石墨炔复合材料提供了新的思路。  相似文献   

4.
王蕾  赵冬冬  刘旭  于鹏  付宏刚 《化学学报》2017,75(2):231-236
针对目前的锂离子电池负极材料存在比容量低、循环稳定性差等问题,本工作发展了简单、有效的方法合成氧化亚钴纳米粒子与石墨烯的复合材料(CoO/RGO).采用氧化石墨(GO)和Co(NO32作为原料,先用水热路线制备了前驱体,再将其在氮气气氛下热处理,最终得到CoO/RGO复合材料.存在于石墨烯表面的CoO纳米粒子可以有效地阻止石墨烯片层的聚集,同时石墨烯片层的相互连接能够形成三维的空间网络,提高复合材料的导电性.将合成的CoO/RGO复合材料作为负极,以锂片作为正极,组装成纽扣电池.电化学测试表明,在电流密度为100 mA·g-1的条件下,初始比容量放电比容量高达1312.6 mAh·g-1,在10000 mA·g-1的大电流密度下,经过300圈循环后,其比容量仍然可以达到557.4 mAh·g-1.这表明CoO/RGO复合材料具有高的比容量、优异的倍率性能及循环稳定性,这归因于3D网状结构能够避免在锂离子的嵌入/脱出过程中材料的结构被严重破坏.  相似文献   

5.
二氧化钛(TiO2)作为有前景的钠离子电池负极材料, 具有良好的循环稳定性, 但由于其导电率较低, 而导致容量和倍率性能不佳限制了其实际应用. 本文采用喷雾干燥技术制备了氧化石墨烯/纳米TiO2复合材料(GO/TiO2), 通过热处理获得还原氧化石墨烯/TiO2复合材料(RGO/TiO2). 电化学测试结果表明, 还原氧化石墨烯改性的RGO/TiO2复合材料的电化学性能得到显著提升, RGO含量为4.0%(w)的RGO/TiO2复合材料在各种电流密度下的可逆容量分别为183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1)和114.4 mAh·g-1 (600mA·g-1), 而纯TiO2的比容量仅为93.6 mAh·g-1 (20 mA·g-1), 69.6 mAh·g-1 (100 mA·g-1)和26.5 mAh·g-1 (600mA·g-1). 4.0%(w) RGO/TiO2复合材料体现了良好的循环稳定性, 在100 mA·g-1电流密度下充放电循环350个周期后, 比容量仍然保持146.7 mAh·g-1. 同等条件下, 纯TiO2电极比容量只有68.8 mAh·g-1. RGO包覆改性极大提高了TiO2在钠离子电池中的电化学嵌钠/脱钠性能. RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.  相似文献   

6.
Bi2Te3钾离子电池负极存在结构不稳定性和电化学反应动力学缓慢问题。本研究在手风琴状MXene基底上生长棒状Bi2Te3,随后利用P掺杂制备了高性能P-Bi2Te3/MXene超结构。这种新型负极具有丰富的Te空位和良好的自适应特性,展现出优异的循环稳定性(在0.2 A·g-1电流密度下200次循环后可逆容量为323.1 mAh·g-1)和出色的倍率能力(20 A·g-1时可逆容量为67.1 mAh·g-1)。动力学分析和非原位表征表明,该超结构具有优异的赝电容特性、出色的K+离子扩散能力以及可逆的嵌入反应和转化反应机理。  相似文献   

7.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

8.
MOFs材料作为一类新型的锂离子电池电极材料而受到广泛关注和研究. 作者通过溶液扩散法将Co3(HCOO)6原位负载在 rGO(还原氧化石墨烯)上制备出Co3(HCOO)6@rGO复合材料. 将Co3(HCOO)6@rGO作为锂离子电池负极材料,以500 mA·g-1的电流密度恒电流充放电循环 100 周后,仍然保持有 926 mAh·g-1 的比容量,亦表现出很好的倍率性能. 循环伏安和X-射线光电子能谱测试表明,Co3(HCOO)6@rGO材料上的Co2+和甲酸根在充放电过程中均发生可逆的电化学反应. 对比同样采用溶液扩散法合成的 Co3(HCOO)6 的测试结果发现,rGO起到活化甲酸根的电化学反应的作用,同时也改善了Co3(HCOO)6的倍率性能. 将MOFs材料与rGO复合为优化 MOFs 材料的电池性能提供了一个新思路.  相似文献   

9.
以天然鳞片石墨为原料,采用改良的Hummers方法,制备了高纯度的薄层或单层氧化石墨(GO);并以抗坏血酸为还原剂,通过自组装还原的方式成功制备了具有三维多孔独巨石结构的还原氧化石墨烯(rGO)气凝胶,其形貌和结构经FT-IR, SEM, TEM, XRD和XPS表征。并对其作为锂离子电池负极材料的电化学性能进行了测试。结果表明:rGO气凝胶独特的形貌和结构提高了其比容量和循环性能,在100 mA·g-1电流密度下首周放电比容量可达1 700 mAh·g-1,首周充电比容量达710 mAh·g-1,经过100周循环后放电比容量仍可保持在450 mAh·g-1,库伦效率保持在98%。  相似文献   

10.
吕之阳  冯瑞  赵进  范豪  徐丹  吴强  杨立军  陈强  王喜章  胡征 《化学学报》2015,73(10):1013-1017
锂离子电池具有能量密度高和循环性好等优点, 广泛应用于小型移动设备等领域, 但尚不能满足需要兼具高容量和高倍率性能的应用要求. 以兼具高比表面积、氮含量高且可调、良好石墨化程度、多尺度分级结构(含孔结构)、有微孔通道的寡层笼壁结构等特征的氮掺杂碳纳米笼(NCNC)为锂离子电池负极材料, 展现出高的比容量、优异的倍率性能和稳定性, 譬如: 在0.1 A·g-1小电流密度下, NCNC800的循环稳定的充电比容量可以高达约900 mAh·g-1, 显著优于商业石墨; 在20.0 A·g-1大电流密度下, 循环500圈后的可逆比容量仍能稳定在约135 mAh·g-1. 如此优异的电化学性能可归因于NCNC的结构特征, 如高比表面积、良好石墨化程度、独特介观结构和孔结构, 这些特征有利于锂离子传输、电解液渗透和电子传导等. 这为开发高倍率和高比容量的锂离子电池负极材料提供思路.  相似文献   

11.
MOF衍生金属硒化物由于其有序的碳骨架结构和高导电性,被认为是钠离子电池极具前景的负极材料。它们具有快速的电子/离子输运通道,有利于钠离子的嵌入和脱出。然而,循环过程中的大量体积膨胀会导致结构坍塌。为了解决这个问题,通过表面改性在MOF衍生金属硒化物表面引入了一个二维的还原氧化石墨烯网络,既可以缓解体积变化,又能加速电子转移。实验证实这种策略是有效的,在1 A·g-1下500次循环后,包覆了还原氧化石墨烯的复合材料电极容量保持率提高到了95.2%。相比之下,不含还原氧化石墨烯的容量保留率仅为74.2%。此外,由于还原氧化石墨烯网络和MOF衍生In2Se3协同作用,在0.1 A·g-1下显示出了468 m Ah·g-1的优越容量。而在相同的电流密度下,未包覆还原氧化石墨烯的只产生393 m Ah·g-1的比容量。采用循环伏安法(CV)研究了In2Se3@C/rGO电极的电化学过程,结果表明其具有良好的电化学反应活性...  相似文献   

12.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

13.
适用于极低温环境的石墨烯超级电容具有广阔的应用前景。然而,由于片层间严重的堆叠团聚,目前石墨烯超级电容的低温储能性能并不理想。本文使用H2O2氧化刻蚀法制备了孔洞石墨烯(rHGO),将传统有机溶剂碳酸丙烯酯(PC)和低凝固点溶剂甲酸甲酯(MF)混合制备了混合溶剂有机电解液,组装获得了能够在-60 ℃极低温环境下稳定工作的超级电容。结果表明,该超级电容在-60 ℃下的比电容为106.2 F·g-1,相对于常温电容(150.5 F·g-1)的性能保持率高达70.6%,显著优于未做处理的石墨烯(52.3%)以及文献中的其他石墨烯材料。得益于孔洞化形貌中丰富的介孔和大孔所形成的离子传输通道和缩短的离子传输路径,孔洞石墨烯内的离子扩散阻抗远小于普通石墨烯,且受温度降低的影响更小。在-60 ℃的极低温条件下,该超级电容表现出26.9 Wh·kg-1的最大能量密度和18.7 kW·kg-1的最大功率密度,优于传统碳材料的低温超级电容性能。-60 ℃时在5 A·g-1电流密度下循环充放电10000次后电容保持率达89.1%,具有良好的低温循环稳定性。  相似文献   

14.
中性/弱酸性水系锌锰电池因其能量密度高、价格低廉、环境友好等优势受到广泛关注。然而,现有的二氧化锰正极材料存在导电性能差,在充放电过程中易于溶解等问题。这严重影响了电池的倍率性能和循环稳定性,阻碍了中性锌锰电池的应用。为了解决上述问题,本文设计了以碳纳米管(CNT)网络薄膜为导电基底沉积聚吡咯(PPy)包覆二氧化锰(PPy@MnO2/CNT)的多级结构电极。碳纳米管和聚吡咯组装形成高比表面积的三维交联导电网络,为活性材料提供了快速的电子、离子传输通道;聚吡咯包覆纳米级二氧化锰能够有效地抑制二氧化锰的溶解,进而提升电池的倍率特性和循环稳定性。以PPy@MnO2/CNT作为正极材料组装的水系锌锰电池在1 A·g-1的电流密度下,比容量达到210 mAh·g-1,循环1000圈后,电池依然具有较高的容量保持率(85.7%)。本工作的导电聚合物包覆活性物质的策略可为发展高稳定柔性储能器件提供新思路。  相似文献   

15.
由于水分解在绿色能源领域的重要作用,能够在碱性介质中进行析氢(HER)和析氧(OER)反应的双功能电催化剂具有重要的应用价值。本文报道一种具有丰富缺陷的表面改性NiCo2O4纳米线(NWs),在碱性介质中作为一种高效的整体水裂解电催化剂。X射线光电子能谱(XPS)分析表明,Co2+/Co3+比值的增加是表面修饰NiCo2O4纳米线具有优异双功能电催化性能的重要原因。结果表明,在1.0 mol·L-1 KOH溶液中,通过有机配体主导的表面改性,优化后的NiCo2O4纳米线在电流密度达到10 mA·cm-2时的HER过电位仅为83 mV,OER过电位仅为280 mV。更重要的是,有机配体表面改性后的NiCo2O4纳米线表现出了出色的水分解性能,在2.1 V电压下达到了100 mA·cm-2的电流密度。目前的工作凸显了提高NiCo2O4 NWs尖晶石结构中Co2+含量对促进整体水裂解的重要性。  相似文献   

16.
作为微电子器件的理想电源,全固态薄膜锂电池(TFB)已经被广泛地研究了几十年,并开始进入商业化应用。然而,目前关于失效TFB的回收与再利用的研究几乎没有,这将会阻碍TFB的可持续发展。本工作针对因金属锂负极失效而造成电池失效的TFB,提出了一种简单的基于最常见LiCoO2 (LCO)/LiPON/Li TFB (F-TFB)的直接回收再利用的方法。研究发现,F-TFB中的金属锂负极薄膜在循环过程会被部分氧化从而造成电池失效。我们提出利用无水乙醇溶液有效地溶解并去除F-TFB上失效的金属锂负极部分,从而快速地回收底层的LCO/LiPON薄膜。结构分析和表面分析结果表明,回收的LCO/LiPON薄膜中的LCO正极的晶体结构、LCO/LiPON的界面结构以及LiPON电解质的表面保持完好,使其再利用成为了可能。进一步地,我们在回收的LCO/LiPON薄膜上依次沉积了LiPON和Li薄膜,构建得到了电化学性能恢复的LCO/LiPON/Li TFB,并获得了与新制备的TFB相一致的比容量(0.223 mAh∙cm−2)、良好的倍率性能和循环寿命(500次循环后容量保持率为77.3%)。这种简单而有效的回收再利用方法有望延长固态电池的使用寿命,减少能源和资源消耗,促进固态电池的可持续发展。  相似文献   

17.
氧化亚硅(SiO)作为锂离子电池负极材料,具有较高的理论比容量(~2043 mAh·g-1)以及合适的脱锂电位(< 0.5 V),且原料储量丰富、制备成本较低、对环境友好,被认为是下一代高能量密度锂离子电池负极极具潜力的候选材料。然而,SiO在脱/嵌锂过程中存在着较严重的体积效应(~200%),易导致材料颗粒粉化、脱落,严重影响了SiO负极电极的界面稳定性和电化学性能。近年来,人们围绕SiO负极结构优化和界面改性开展了大量工作。本文先从SiO负极材料的结构特点出发,阐述了该材料面临的主要瓶颈问题;继而从SiO的结构优化、SiO/碳复合和SiO/金属复合等三方面,系统总结了迄今已有的SiO负极结构设计和界面调控策略,并分别对其方法特点、电化学性能以及二者间关联规律进行了比较和归纳,最后对SiO负极材料结构和界面改性的未来发展方向进行了展望。  相似文献   

18.
金属锂具有超高的理论容量(3860 mAh·g-1)和低氧化还原电位(-3.04 V vs.标准氢电极),是极具吸引力的下一代高能量密度电池的负极材料。然而,循环过程中的体积膨胀、锂枝晶生长和“死锂”等问题严重的限制了其实际应用。合理设计三维骨架调控金属锂的成核行为是抑制锂枝晶生长的有效策略。本文中,我们发展了一种“软硬双模板”的方法合成了兼具大孔和介孔的三维碳-碳化钛(Three-dimensional macro-/mesoporous C-TiC,表示为3DMM-C-TiC)复合材料。多级孔道为金属锂的沉积提供了足够的空间,缓冲充放电中巨大的体积变化。此外,TiC的引入显著增强多孔骨架的导电性,改善锂金属的成核行为,促进金属锂的均匀成核和沉积,抑制锂枝晶生长。3DMM-C-TiC||Li电池测试表明,在循环300圈以后,库伦效率仍保持在98%以上。此外,所得材料与LiFePO4 (LFP)组成的全电池也表现出优异的倍率和循环性能。本工作为无枝晶锂金属负极的设计提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号