首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new chiral selectors, 6-tert-butyldimethylsilyl-2,3-diethyl-a-cyclodextrin, 6-tert-butyldimethylsilyl-2,3-diethyl- and dipropyl-β-cyclodextrin (TBDE-α-CD, TBDE-β-CD, TBDP-β-CD) were synthesized and tested as chiral stationary phases in capillary gas chromatography. TBDE-β-CD in particular showed a high enan-tioselectivity for test chiral compounds due to good solubility in a polar polysiloxane (OV-1701). Enantioselectivity obtained with TBDE-β-CD was compared with that of 6-tert-butyldimethylsilyl-2,3-di-O-methyl-β-cyclodextrin (TBDM-β-CD). Better enantiose-lectivity was obtained with TBDE-P-CD than with TBDM-β-CD for the test chiral compounds studied. This is probably due to greater effect of the increased hydrophobicity of TBDE-β-CD which favors inclusion of the analytes than the effect of increased steric hindrance. With TBDP-β-CD the less polar lactones are well separated due most likely to increased hydrophobicity of the propyl groups while the more polar are not well resolved. For TBDP-β-CD it is likely that the unfavorable steric hindrance is predominant over the favorable hydrophobicity of the propyl groups, thus hindering the formation of inclusion complexes of the alcohols with TBDP-β-CD. TBDE-α-CD was also a valuable chiral selector for the separation of small chiral molecules such as simple secondary alcohols and nitro-substituted alcohols.  相似文献   

2.
Enantiomeric diterpene hydrocarbons were isolated from different plants and identified by mass spectrometric and NMR investigations. All enantiomeric pairs could be resolved by capillary gas chromatography using either heptakis(2,6-di-O-methyl-3-O-pen-tyl)-β-cyclodextrin or heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)-β-cyclodextrin as chiral stationary phases.  相似文献   

3.
The even numbered γ(δ)-thionolactones (C6–C12) were investigated, using heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)- and heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as chiral stationary phases in capillary gas chromatography. The odor characteristics of γ(δ)-thionolactone enantiomers were investigated by enantioselective gas chromatography/olfactometry.  相似文献   

4.
The characteristics of the new chiral stationary phase heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin are outlined and compared with permethyl- and perethyl-β-cyclodextrins.  相似文献   

5.
The direct enantioselective analysis of 3-, 4-, and 5-hydroxy fatty acids from biological material has been achieved by enantioselective multidimensional gas chromatography (enantio-MDGC) with heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)- or (2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as chiral stationary phase. All the bacteria investigated produced polyesters of enatiomerically pure (R) configured compounds.  相似文献   

6.
Using a dual column gas chromatograph equipped with two capillary columns coated with heptakis(6-O-methyl-2,3-di-O-pentyl)-β-cyclodextrin (6-me-2,3-pe-β-CD) and octakis(6-O-methyl-2,3-di-O-pentyl)-γ-cyclodextrin (6-me-2,3-pe-γ-CD), respectively, all important olefinic monoterpene hydrocarbons occurring in essential oils, including α-thujene, α- and β-pinene, camphene, sabinene, α- and β-phellandrene, Δ-3-carene and limonene can be resolved into enantiomers. With the chromatographic system described the characteristic enantiomeric composition of these monoterpene hydrocarbons in essential oils can be determined.  相似文献   

7.
《Tetrahedron: Asymmetry》2006,17(17):2504-2510
The molecular basis of the efficient enantiodiscrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane, a chiral degradation product of the inhalation anaesthetic sevoflurane, using heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as chiral selector, has been investigated by NMR spectroscopy. An interaction mechanism is proposed, which highlights the role of the functional groups on the β-cyclodextrin rims in addition to a partial molecular inclusion.  相似文献   

8.
In pre vious papers, 2,6-di-O-methyl-3-O-pentyl-β-cyclodextrin (CD) was demonstrated to be successful in separating volatile compounds, while avoiding the drawbacks of 2,3,6-tri-O-methyl-O-methyl-β-CD in terms of column stability and operating temperature. Since a CD chiral selector of universal use has not yet been found, and at least two (or more) columns coated with different CD derivatives are therefore necessary for routine work, the performance of 2,6-di-O-methyl-3-O-pentyl-γ-CD, 2,6-di-O-methyl-3-O-(4-oxopentyl)-γ-CD, 2,6-di-O-pentyl-3-O-(4-oxo-pentyl)-β-CD, and 2,6-di-O-pentyl-3-O-(-4-oxo-pentyl)-γ-CD diluted in polysiloxanes for the separation of volatile compounds in aromas and essential oils will be illustrated; each column coated with each of the newly synthesized CD derivatives was evaluated by analyzing more than 150 different recemates with different structures.  相似文献   

9.
Supramolecular inclusion of modified β-cyclodextrin (β-CD) with Triton X-100 (TX) and α-bromonaphthalene (BN) was studied by fluorescence and phosphorescence measurements. Major differences were observed in the magnitude of the apparent stability constants and quenching constants of the inclusion complexes. Methyl substitution on the rims of β-CD increased the binding of TX with β-CD but was unfavorable to the protection of the phenyl group of TX from fluorescence quenching and further accommodation of BN for steric considerations. According to the overall molecular size of β-CD, TX and BN, further inclusion of BN in the cavity of β-CD occupied by TX may force the flexible tert-octyl chain of TX to deform to a greater extent and close packing complexes were obtained. Phosphorescence of BN arising from intermolecular energy transfer between BN and the phenyl group of TX was observed when the phenyl group of TX was irradiated. In the case of heptakis(2,6-di-O-methyl)-β-CD, BN failed to penetrate into the cavity because of the steric hindrance of the methyl substituents at the rim of the β-CD cavity.  相似文献   

10.
The major goal of this study was to determine the affinity pattern of the terbutaline (TB) enantiomers toward α-, β-, γ-, and heptakis(2,3-di-O-acetyl)-β-cyclodextrins and using NMR spectroscopy for the understanding of the fine mechanisms of interaction between the cyclodextrins (CD) and TB enantiomers. It was shown once again that CE in combination with NMR spectroscopy represents a sensitive tool to study the affinity patterns and structure of CD complexes with chiral guests. Opposite affinity patterns of TB enantiomers toward native α- and β-CDs were associated with significant differences between the structure of the related complexes in solution. In particular, the complex between TB enantiomers and α-CD was of the external type, whereas an inclusion complex was formed between TB enantiomers and β-CD. One of the possible structures of the complex between TB and heptakis(2,3-di-O-acetyl)-β-CD (HDA-β-CD) was quite similar to that of TB and β-CD, although the chiral recognition pattern and enantioselectivity of TB complexation with these two CDs were very different.  相似文献   

11.
This paper reports the use of an anionic cyclodextrin, heptakis(2,3-di-O-methyl-6-O-sulfato)-β-cyclodextrin (HDMS-β-CD), for chiral separations of pharmaceutical enantiomers by nonaqueous capillary electrophoresis (NACE). Enantiomer resolution was affected mainly by HDMS-β-CD concentration and the acidity of the background electrolyte (BGE). The effects of capillary length and applied voltage on enantiomer resolution were also investigated. Results showed that in a methanol solution of 20 mM phosphoric acid, 10 mM sodium hydroxide, and 10 mM HDMS-β-CD, seven anticholinergic drugs were separated to baseline but no chiral separation was obtained for three other similar drugs. NACE is suitable for routine, rapid separation of the enantiomers of pharmaceutical compounds.  相似文献   

12.
Synthesis and cationic ring-opening polymerization of new 1,6-anhydro-β-lactose derivatives such as hexa-O-methylated (LSHME), tert-butyldimethylsilylated (LSHSE), and benzylated 1,6-anhydro-β-lactoses (LSHBE) were first investigated. The disaccharide monomers were prepared by methylation, tert-butyldimethylsilylation, and benzylation of 1,6-anhydro-β-lactose, respectively. It was found that LSHME was readily polymerized with such Lewis acid catalysts as PF5 and SbCl5 to give stereoregular 2,3-di-O-methyl-4-O-(2′,3′,4′,6′-tetra-O-methyl-β-D -galactopyranosyl)-(1→6)-β-D -glucopyranans which are comb-shaped polysaccharide derivatives. However, LSHSE and LSHBE had almost no polymerizability. It was revealed that the ring-opening polymerizability of the anhydrodisaccharide monomers was influenced by the steric hindrance of the hydroxyl-protective groups. Ring-opening copolymerization of LSHME with 1,6-anhydro-2,3,4-tri-O-benzyl-β-D -glucopyranose (LGTBE) in various ratios of monomer feeds was also examined to afford the corresponding copolymers. Structural analyses of the monomers and polymers were carried out by means of high resolution nuclear magnetic resonance spectroscopy.  相似文献   

13.
The following carbamate derivatives of cyclodextrins (CDs) were prepared as novel chiral stationary phases for capillary gas chromatography: hexakis(2,6-di-O-pentyl)-α-cyclodextrin hexa(3-n-propyl, 3-isopropyl, and 3-phenylcarbamate), heptakis-(2,6-di-O-pentyl)-β-cyclodextrin hepta(3-n-propyl, 3-isopropyl, and 3-phenylcarbamate), and octakis(2,6-di-O-pentyl)-γ-cyclodextrin octa(3-n-propyl, 3-isopropyl, and 3-isopropyl, and 3-phenylcarbamate). Metal capillary columns coated with these stationary phases resolved many kinds of racemic mixture. In general, they were especially effective towards polar compounds such as free alcohols, amines, and epoxides. The types of sample which were effectively resolved depended on the cavity size of the CD: α-CD derivatives were specifically effective toward compounds having linear alkyl chains, and β-CD derivatives toward compounds with phenyl groups. The results indicate that chiral separation with the cyclodextrin carbamates depends on the formation of inclusion complexes and also on the hydrogen-bonding interactions between the samples and the CD carbamates.  相似文献   

14.
The influence of different polysiloxane solvents on the efficiency and stereoselectivity of columns coated with mixtures of heptakis (2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin and the polysiloxanes was investigated. Generally, the enantioselectivity increased with decreasing polarity of the silicone solvent and/or increasing cyclodextrin concentration, with some exceptions. Thermodynamic investigations showed that a change of the diluting phase or the cyclodextrin concentration affects entropy as well as enthalpy differences between the diastereomeric cyclodextrin/solute complexes. As a consequence, a certain cyclodextrin/polysiloxane combination is superior to another only at a particular temperature.  相似文献   

15.
New β- and γ-cyclodextrin derivatives, selectively substituted with n-pentyl and methyl groups, e.g. heptakis(2,6-di-O-methyl-3-O-pentyl)-β-cyclodextrin, octakis(2-O-methyl-3,6-di-O-pentyl)-γ-cyclodextrin, and octakis(2,6-di-O-methyl-3-O-pentyl)-γ-cyclodextrin, have been prepared from specifically protected intermediates. The new cyclodextrin derivatives exhibit unique enantioselectivity towards important chiral constituents of essential oils. The enantiomers of lavandulol, α-bisabolol, nerolidol, and other terpenoid alcohols could be resolved and their presence in different essential oils could be proved. Methyl jasmonate and epi-methyl jasmonate could, in addition, be detected in jasmine concrete by two-dimensional gas chromatography. The enantiomers of the macrocyclic ketone muscone have been separated for the first time.  相似文献   

16.
2,3-Di-O-pentyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin has been evaluated as an enantioselective stationary phase for capillary gas chromatography. Experimental results show a good enantioselectivity towards compounds with different functional groups (haloalkanes, alcohols, esters, terpenoids, amino acid derivatives, and heterocycles). Column stability improves mixing the chiral phase with polysiloxane SE-54 (1 : 1).  相似文献   

17.
The equilibrium constants (K) for the inclusion complexation of three kinds of β-cyclodextrins (β-CDs: native β-CD, heptakis(2,6-di-O-methyl)-β-CD, and 6-O-α-d-glucosyl-β-CD) with OH-substituted naphthalenes (2-naphthol, 2,3-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene) were determined from the induced chemical shifts of NMR measurements for inclusion complexes: K = 188–1,250 mol?1 dm3. The modified β-CDs form stable 1:1 inclusion complexes with OH-substituted naphthalenes, and the high stability of inclusion complexes of 2,6-dihydroxynaphthalene having a hydrophobic body and hydrophilic ends is shown. In addition, the structures of inclusion complexes were characterized by 2D ROESY NMR measurements. The differences in the structure of the inclusion complexes were observed for three kinds of naphthol guest molecules. Based on the results, the inclusion abilities enhanced by methylation of the OH groups at the CD rim or the side chain of branched β-CD are discussed.  相似文献   

18.
The inclusion complexes of four flavonols with modified cyclodextrins (CDs) have been investigated. The effect of heptakis (2,6-di-O-methyl) β-cyclodextrin (DM-β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on the aqueous solubility of flavonols, namely, galangin, kaempferol, quercetin, and myricetin was investigated, respectively. The increased solubility of all flavonols in the presence of CD was evidenced. The NMR experiment and molecular modeling studies showed that flavonols interact with each modified CD through different binding modes. Flavonols can complex with CDs largely by two binding modes. The first one is that B-ring of flavonols is oriented toward secondary rim of CD. The second one is that A-ring of flavonols is oriented toward secondary rim of CD. Whereas only the first mode was observed in DM-β-CD complexes, both the first and the second mode were observed in HP-β-CD complexes in this study.  相似文献   

19.
R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-β-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-β-CD (HS-β-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS-β-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS-β-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.  相似文献   

20.
High-resolution open-tubular columns coated with solutions of heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (Phase I) or heptakis(2,6-di-O-methyl-3-O-trifluoroacetyl)-β-cyclodextrin (Phase II) in moderately polar polysiloxanes such as OV-1701 (5% cyanopropyl/7% phenyl/88% methylpolysiloxane) and OV-225 (25% cyanopropyl/50% phenyl/25% methylpolysiloxane) are used for the gas chromatographic enantiomer separation of volatiles belonging to different classes of compounds. No derivatization procedures are necessary for most of the resolved chiral molecules. The chiral stationary phases can be operated between 25 and 190°C for extended periods of time. The enantiomer separation of saturated, unfunctionalized hydrocarbons clearly demonstrates the importance of molecular inclusion in chiral recognition using cyclodextrins for this class of compounds. The different, and in some cases complementary, selectivity of the Phases I and II is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号